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Abstract

Purpose. To enhance statistical literacy in eye and vision re-
search through practical guidance on hypothesis testing, test 
selection, and interpreting inferential statistics. The goal is to 
reduce common analytical errors and support more clinically 
meaningful conclusions in ophthalmic studies.

Material and Methods. A narrative literature review was con-
ducted using PubMed, Scopus, and Web of Science to iden-
tify best practices in hypothesis testing, error control, and 
test selection relevant to clinical research in ophthalmology 
and optometry. Simulated datasets, based on real-world 
clinical scenarios, were generated in Python to illustrate 
core concepts. Worked examples demonstrate the impact 
of sample size, data distribution, and error type on statistical 
conclusions.

Results. Common misinterpretations of p-values and frequent 
misuse of statistical tests were identified. The review explains 
how reducing the significance level (α) increases Type II error 
risk unless the sample size is increased. A structured decision 
framework was developed to aid the choice between para-

metric and non-parametric tests, including when assumptions 
are violated. Simulations and clinical examples demonstrate 
how effect size, variability, and multiple testing adjustments 
affect results. 

Conclusion. Statistical missteps in eye research often arise 
from poor test selection, inadequate power, or overreliance 
on p-values without context. This article advocates for the 
use of confidence intervals, effect sizes, and transparent 
reporting to enhance the credibility of research findings. 
Following structured analytic frameworks and established 
reporting guidelines (e. g. CONSORT, STROBE) helps ensure 
that statistical conclusions align with clinical relevance, ulti-
mately supporting better patient care and more trustworthy 
research outcomes.

Keywords
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Introduction

Inferential statistics underpin evidence-based clinical re-
search by allowing conclusions to be drawn about popula-
tions from sample data. In eye and vision research (EVR), 
the appropriate selection and application of statistical tests 
are essential for ensuring that study findings are valid and 
clinically meaningful. Despite widespread statistical educa-
tion, persistent data analysis errors have been documented 
across biomedical literature.1 In ophthalmology, recurring 
issues include incorrect units of analysis, improper handling of 
multiple comparisons, and misinterpretation of results.2 These 
are not trivial mistakes; they can lead to flawed conclusions 
and potentially harmful clinical decisions, resulting in wasted 
resources and diminished research impact.3 Enhancing sta-
tistical literacy among clinicians and researchers is critical to 
reducing avoidable errors in eye and vision studies.

Building on Part 1 4, this series (Part 2) emphasises infer-
ential statistics, focusing on hypothesis testing and select-
ing the appropriate test for various study designs and data 
types. Part 1 introduced foundational concepts, including 
data types (nominal, ordinal, interval, ratio), data preparation 
techniques, and the importance of descriptive statistics and 
data visualisation for understanding sample characteristics. 
This second instalment builds directly on that foundation by 
addressing persistent shortcomings in statistical practice. For 
example, ophthalmic trials have frequently demonstrated low 
statistical power and elevated risks of Type II errors (false neg-
atives).5 Inadequate attention to test assumptions and power 
calculations may lead to the missed detection of clinically 
relevant effects or the reporting of spurious results due to 
uncontrolled multiple comparisons. The clinical consequenc-
es of such errors are substantial. Day-to-day decisions in eye 
care, such as whether to adopt a new therapy or interpret a 
diagnostic test, depend on reliable evidence. Inappropriate 
test selection or misinterpretation of results undermines that 
reliability. Conversely, robust statistical methods strengthen 
the evidence base, enabling the detection of meaningful 
effects and guiding practice with greater confidence. Well-
conducted ophthalmic trials have demonstrated how rigorous 
analysis can inform treatment guidelines and enhance patient 
care.5,6,7 Strengthening statistical literacy among eye care 
professionals is crucial for enhancing the quality of research 
and improving the effectiveness of clinical decision-making.

Methods

The methods used in this article have been described in 
Part 1 of this series.4 In brief, a narrative literature review 
was conducted using PubMed, Scopus, and Web of Science 
databases to identify best practices in statistical testing for 
EVR. Simulated datasets were created in Python to illus-
trate core concepts, reflecting typical clinical scenarios in 
ophthalmology, optometry, and vision science. All data are 
synthetic and intended solely for educational use. To rein-
force key principles, supplementary materials include worked  
examples.

Hypothesis testing principles  
in eye & vision research

Most clinical research begins with a question: for example, 
“Does treatment A improve (e.g. visual acuity) more than 
treatment B in patients with (e.g. age-related macular degen-
eration)?” Hypothesis testing provides a formal framework to 
answer such questions with quantitative evidence. The basic 
principle is to pose two opposing hypotheses and use sample 
data to determine which is better supported.
1.	 Null Hypothesis (H₀): Generally, a statement that there is 

no difference between groups or no effect of an interven-
tion. It posits that any observed difference in outcomes 
is due to chance. For our example, H₀ might state, “There 
is no significant difference in mean visual acuity improve-
ment between treatment A and treatment B.”

2.	 Alternative Hypothesis (H₁ or Hα): Directly following the 
null hypothesis is the alternative hypothesis, which is the 
statement of an effect or difference – what the research-
er hopes or expects to find. In the example, H₁ might be 
“Treatment A leads to greater mean improvement in visual 
acuity than treatment B.”

Phrasing the null and alternative hypotheses correctly is 
one of the most crucial steps in designing and conducting 
research, as they define every subsequent step. Data are 
collected once the hypotheses are described, and an appro-
priate statistical test is selected based on the study design 
and data characteristics. The analysis yields a test statistic 
and a corresponding p-value. The p-value represents the 
probability of obtaining data as extreme as (or more extreme 
than) what was observed, assuming the null hypothesis is 
true.8,9 It is a measure of compatibility between the observed 
data and the null hypothesis, not the probability that the null 
hypothesis is true.

A p-value of 0.03 means that if there were truly no differ-
ence between the treatments, there would be a 3 % chance of 
observing a result as extreme as the one found, purely due to 
random variation. This does not mean there is a 97 % chance 
that the alternative hypothesis is correct. That is a common 
misinterpretation. The p-value provides information about 
the null hypothesis, not about the alternative. It reflects 
how compatible the observed data are with the assumption 
that there is no effect or difference. Statistical tests do not 
directly prove the null hypothesis is false. Instead, if the data 
are unlikely under the assumption that the null hypothesis is 
true, this is considered evidence against the null hypothesis 
and in favour of the alternative.

The researcher must determine, based on professional 
judgment, risk assessment, and review of relevant literature, 
how much uncertainty is acceptable in a given study. This 
pre-specified threshold for uncertainty is known as the signif-
icance level, often denoted by alpha (α). It defines the maxi-
mum probability of making a Type I error, incorrectly rejecting 
the null hypothesis when it is actually true. A significance level 
(denoted α or Type I error) is set before data analysis, typically 
at 0.05, to guide decision-making. If p < α, the null hypothesis 
is rejected, and the result is said to be statistically significant. 
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If p ≥ α, the null hypothesis is not rejected. However, failure 
to reject H₀ does not imply it is true; it may simply reflect 
insufficient evidence, often due to small sample size or high 
variability. The balance between having sufficient evidence 
to detect a true effect and managing error rates is addressed 
during the study design phase through a priori power calcu-
lations to determine an adequate sample size.

In EVR, where numerous biological and measurement 
factors may influence outcomes such as visual acuity, IOP, or 
retinal thickness, interpreting p-values in isolation can be mis-
leading. A statistically significant result does not necessarily 
imply clinical significance. For example, a mean IOP reduc-
tion of 0.5 mmHg with a p-value of 0.04 may be statistically 
significant but clinically negligible. Conversely, a p-value just 
above 0.05, say, 0.06, should not automatically be dismissed, 
especially if the effect size is meaningful and consistent with 
prior evidence. Moreover, p-values are sensitive to sample 
size. Extensive studies can produce very small p-values for 
trivial effects, while small studies may yield non-significant 

p-values despite clinically important differences (Table 1). 
Therefore, effect sizes and confidence intervals should always 
accompany p-values to provide context.

The confidence interval indicates the range within which 
the true effect is likely to lie, and its width reflects the preci-
sion of the estimate. While p-values play a central role in hy-
pothesis testing, they should not be treated as the sole arbiter 
of truth. Interpreting them requires careful consideration of 
the study design, effect size, confidence intervals, and the 
clinical context. Overreliance on arbitrary thresholds (e.g., 
p < 0.05) without proper context risks drawing misleading 
conclusions, (Table 1).

Clinical example 1: To illustrate the interpretation of a p-val-
ue, consider a clinical trial comparing a new eyedrop to stand-
ard treatment for lowering IOP. After four weeks, the mean 
IOP reduction is 3.0 mmHg in the treatment group (range: 
0.5 to 6.0 mmHg) and 2.0 mmHg in the control group (range: 
–0.5 to 5.5 mmHg). A two-sample t-test yields p = 0.04. This 

Table 1: . Simulated impact of sample size, standard deviation, and mean intraocular pressure (IOP) difference on p-values in two-group 
t-tests comparing a hypothetical IOP-lowering drug to placebo. Baseline IOP is fixed at 15 mmHg for both groups. This table illustrates how 
p-values are affected by sample size and variability, emphasising the importance of interpreting statistical significance in the context of 
clinical relevance.

Sample Size* 
per Group

Standard 
Deviation**

Baseline  
IOP  
(mmHg)

Mean  
IOP After 
Treatment 
(Drug) 
(mmHg)

Mean 
IOP After 
Treatment 
(Placebo) 
(mmHg)

Effect  
Size*** 
(mmHg)

P-value Significant 
(Y/N)

10 1 25 24.5 25 0.5 0.278 N

10 5 25 24.5 25 0.5 0.826 N

10 1 25 19.0 25 4.0 0.000 Y

10 5 25 19.0 25 4.0 0.015 Y

20 1 25 24.5 25 0.5 0.122 N

20 5 25 24.5 25 0.5 0.754 N

20 1 25 19.0 25 4.0 0.000 Y

20 5 25 19.0 25 4.0 0.001 Y

50 1 25 24.5 25 0.5 0.014 Y

50 5 25 24.5 25 0.5 0.618 N

50 1 25 19.0 25 4.0 0.000 Y

50 5 25 19.0 25 4.0 0.000 Y

100 1 25 24.5 25 0.5 0.001 Y

100 5 25 24.5 25 0.5 0.480 N

100 1 25 19.0 25 4.0 0.000 Y

100 5 25 19.0 25 4.0 0.000 Y

1000 1 25 24.9 25 0.1 0.025 Y

* Sample Size: As the sample size increases, the p-value decreases, indicating higher statistical power to detect a given effect size.
** Standard Deviation: A higher standard deviation (greater variability) results in higher p-values for the same effect size and sample size, making it more difficult 
to detect significant differences. 
*** Effect Size: Larger effect sizes lead to lower p-values, indicating a higher likelihood of detecting a true difference between groups.
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suggests that, assuming no true difference exists between 
treatments (i.e., the null hypothesis is true), there is a 4 % 
chance of observing a difference of 1.0 mmHg or more purely 
by chance. The result is statistically significant at the conven-
tional threshold of α = 0.05. While the difference is statistical-
ly significant, this does not guarantee clinical relevance. The 
observed ranges show natural variation within each group, 
which occurs even when treatments are similarly effective.

Type I and Type II errors

In hypothesis testing, there are two types of errors that can 
occur in the decision-making process, both of which have 
special relevance in clinical research:
1.	 Type I Error (False Positive): This occurs when we reject 

the null hypothesis when it is actually true. In essence, 
this is a „false alarm,“ concluding there is a difference or 
an effect when, in reality, there is none. The probability of 
making a Type I error is determined by the significance 
level, α. For example, with α = 0.05, there is a 5 % risk of 
„discovering“ a difference that isn‘t truly there. In EVR, a 
Type I error could mean believing a new drug improves 
visual acuity when it has no effect, potentially leading to 
the adoption of an ineffective treatment.

2.	 Type II Error (False Negative): This occurs when we fail to 
reject the null hypothesis when it is actually false. In other 
words, this is a „missed opportunity“ - failing to detect a 
real effect or difference. The probability of a Type II error 
is denoted by β. The statistical power of a test, which is the 
probability of correctly detecting a true effect, is calculat-
ed as (1 − β). In EVR, a Type II error could mean overlooking 
a real benefit of a new glaucoma therapy because the 
study was too small or the data too variable. Historically, 
less attention was given to controlling Type II errors, but 
this is changing, as underpowered studies have significant 
ethical and scientific implications. For example, a review 
of ophthalmology trials found that a large portion had a 
high risk of Type II errors, meaning real, clinically relevant 
effects could easily have been missed due to insufficient 
sample sizes.5

The researcher must balance two types of errors in statistical 
testing: false positives (Type I errors) and false negatives (Type 
II errors). This trade-off can be illustrated using the image of 
a bowl filled with sand, where the sand represents the total 
amount of potential error. Removing sand from one side of 
the bowl simply results in a mound forming on the other side. 
The total amount of error remains the same unless the size 
of the bowl is increased. In statistical terms, reducing the 
significance level (α) to lower the risk of false positives usually 
increases the risk of false negatives (denoted by β), unless the 
sample size is increased. To manage this balance, researchers 
use study design strategies, including formal sample size 
calculations, to ensure the study has adequate power. Power 
refers to the probability of correctly detecting a true effect, 
and typical targets are 80 % or 90 %, which correspond to β 
values of 0.2 or 0.1, respectively. For example, when design-
ing an ophthalmic clinical trial, the researcher calculates the 

required number of participants needed to detect a clinically 
meaningful difference, such as a five-letter improvement in 
visual acuity, with high power at the selected α level.

One-Tailed versus Two-Tailed Tests

Another consideration in hypothesis testing is whether to 
use a two-tailed (two-sided) or one-tailed test. A two-tailed 
test assesses for any difference in either direction, while a 
one-tailed test only examines a difference in a pre-specified 
direction. For example, when evaluating a new myopia control 
lens against a standard lens, a two-tailed H₁ might be: “There 
is a difference in mean myopic progression between lenses,” 
capturing both slower and faster progression. A one-tailed H₁ 
might state: “The new lens slows myopia progression more 
than the standard lens,” excluding the possibility of a nega-
tive effect. Although one-tailed tests offer greater power to 
detect an effect in the specified direction (since the entire 
α is allocated to one tail), they carry a substantial limitation: 
they ignore effects in the opposite direction, which may be 
clinically important or harmful. In the above example, if the 
new lens actually worsens progression, a one-tailed test fo-
cused only on improvement would fail to detect it.

For this reason, two-tailed tests are standard in clinical 
research.10 The small loss in power is outweighed by the eth-
ical and scientific importance of being open to detecting 
unexpected harm. Most peer-reviewed journals discourage 
or reject the use of one-tailed tests unless a very strong 
justification is provided, typically only when an effect in the 
opposite direction is truly impossible or irrelevant, which is 
rare in medical research. 

Clinical example 2: A clinical trial comparing a new retinal 
implant designed to restore vision in patients with advanced 
photoreceptor degeneration to standard care. The primary 
outcome is a functional visual score. The researchers hypoth-
esise improvement with the implant. If they used a one-tailed 
test (α = 0.05, one-tailed), they might achieve significance 
with a smaller sample size if the implant is effective. However, 
if the implant unexpectedly caused some damage, leading to 
worse scores, a one-tailed test focused only on improvement 
would not register this decline as statistically significant, even 
if it was large. A two-tailed test (α = 0.05 split into 0.025 in 
each tail) would require more data to support improvement, 
but it would also flag a significant deterioration.

Two-tailed tests are almost always preferred in eye and vision 
research. They protect against unanticipated harm and align 
with the principles of ethical clinical investigation. One-tailed 
tests should be reserved for exceptional cases with clear, 
pre-defined justification.
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Parametric vs non-parametric  
tests: Assumptions and decision  
framework

Choosing the right statistical test depends on the type of data 
and whether certain assumptions are met. Broadly, statisti-
cal tests can be classified as parametric or non-parametric 
(distribution-free). Parametric tests assume that the data 
follow a specific distribution (typically a normal distribution 
for continuous data) and utilise model parameters, such as 
means and standard deviations. Non-parametric tests make 
fewer assumptions about the data’s distribution and often rely 
on the rank-ordering of the data rather than the raw values. 
Both tests are widely used in EVR, and each has its place. 
Understanding when to use a parametric vs a non-parametric 
test is essential for valid analysis.

Parametric tests and their assumptions

Parametric tests are typically applied to continuous, approx-
imately normally distributed data. Common assumptions 
include:
1.	 Normality: The data should follow a normal distribution. 

This can be tested using normality tests, such as the 
Shapiro-Wilk Test. 

2.	 Homoscedasticity: The variances across comparison 
groups should be equal. This can be assessed using  
Levene‘s Test, which checks for equal variances among 
the different groups. 

3.	 Independence: The observations should not be corre-
lated. This is typically ensured by the study design (e.g., 
recruiting separate individuals for each group) rather than 
a formal statistical test. For non-independent data, such 
as measurements from two eyes of the same person or 
repeated measures over time, specific analytical methods 
that account for the correlation must be used. 

These assumptions need to be checked. If they are satisfied, 
parametric tests are powerful and yield accurate p-values. 
A typical example is the Student’s t-test, which compares 
the means of two independent groups. Another is ANOVA 
(Analysis of Variance), which compares means across three or 
more groups. For repeated measurements, repeated-meas-
ures ANOVA is used, which adds a further assumption of 
sphericity (a specific structure of equal variances of the dif-
ferences between conditions). Violating these assumptions 
can lead to incorrect results; for instance, using an ordinary 
t-test on highly skewed data can inflate the Type I error rate 
or reduce power.

Non-Parametric tests and their applications

Non-parametric tests do not assume a specific distribution 
and are more flexible for non-normal, skewed, or ordinal data. 
They typically work by ranking the data across groups and 
comparing the distribution of these ranks.

A well-known example is the Mann-Whitney U test (the 
Wilcoxon rank-sum test), which compares two independent 
groups based on the sum of ranked observations. It assumes 
independence and equal shape of distributions under the 
null hypothesis.

Other common non-parametric tests include:
1.	 Wilcoxon signed-rank test: for paired data (e.g. pre-and 

post-treatment in the same eye)
2.	 Kruskal-Wallis test: for comparing more than two inde-

pendent groups.
3.	 Friedman test: the non-parametric counterpart to 

repeated-measures ANOVA.
These methods are particularly suitable when data are not 
normally distributed and transformation 4 is inappropriate 
(e.g., if it makes the results difficult to interpret clinically) or 
unsuccessful (i.e., the data remain skewed even after trans-
formation).

When to choose non-parametric  
over parametric

A commonly cited rule is to use parametric tests when their 
assumptions are met; otherwise, non-parametric tests are 
safer. In practice, clinical data are rarely perfectly normal. For 
example, corneal endothelial cell counts can be skewed, and 
visual acuity (especially in Snellen lines) is bounded, making 
parametric assumptions questionable. Outliers such as un-
usually high IOP or anomalous visual field indices are also 
common, potentially distorting parametric results.

Parametric tests like the t-test are sensitive to such issues. 
A single outlier can substantially shift the mean and inflate 
variance, increasing the risk of Type I or II errors. In contrast, 
non-parametric tests based on ranks (e.g. Mann-Whitney U) 
are more robust, meaning they are less affected by skew-
ness and outliers. These tests compare medians or over-
all rank patterns, which are more robust in the presence of  
non-normality.

This robustness, however, comes at a cost: a slight reduc-
tion in statistical power when parametric assumptions are 
met. For instance, the asymptotic relative efficiency (ARE) 
of the Mann-Whitney U test compared to the t-test is ap-
proximately 0.955.11 This means that the Mann-Whitney test 
requires approximately 4.5 % more subjects to achieve the 
same power as a t-test under normal conditions. In most 
studies, this difference is minimal and easily justified by the 
gain in robustness under imperfect data conditions.

Crucially, the performance advantage shifts under 
non-normal conditions. If the data are heavily skewed or 
contain outliers, parametric tests may show inflated Type I 
error rates or lose power, while non-parametric tests remain 
valid or even superior. 

Clinical example 3: In a simulated scenario with extreme 
skew or kurtosis (Figure 1), the non-parametric test can de-
tect differences that the parametric test completely misses, 
effectively having infinite relative efficiency. To illustrate, a 
skewed distribution of keratocyte density in corneal tissue 
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where a few samples have very high counts. If two groups 
(treated vs untreated) are with a t-test compared, those high 
outliers could dominate the mean and variance estimates, 
possibly obscuring a consistent difference in the bulk of the 
data. A Mann-Whitney U test, which ranks all values, will 
mitigate the effect of those outliers and may detect that 
overall, ranks in the treated group are higher, even if means 
are not straightforward to compare. 

 
Non-parametric methods are also advantageous in small-sam-
ple studies. When the sample size is small (e.g., < 25 per 
group), assumptions about the distribution are harder to 
verify. Studies comparing small-sample performance have 
shown that Wilcoxon rank-based tests are nearly as powerful 
as t-tests under normal conditions and significantly more 
powerful under non-normal conditions (Table 2).

While parametric tests are powerful and efficient under 
ideal conditions, non-parametric methods offer robustness, 
flexibility, and practical advantages in the complex and often 
imperfect reality of clinical eye research. Understanding their 

respective assumptions and trade-offs enables researchers to 
select the most suitable test for their data, thereby enhancing 
the reliability and validity of their research findings.

A practical framework for choosing between 
parametric and non-parametric tests

The selection of an appropriate statistical test should be 
grounded in the outcome‘s measurement level, the data 
distribution characteristics, sample size, and the study‘s tol-
erance for error types. The following steps offer a structured 
approach for test selection:
1.	 Consider the measurement level: If the outcome variable 

is nominal (categorical) or ordinal, parametric tests such 
as t-tests or ANOVA are not valid. Instead, non-parametric 
or categorical data methods should be used. For example, 
glaucoma severity grades on an ordinal scale should be 
analysed using a Mann-Whitney U test or, if treated cat-
egorically, a chi-square test, not a t-test.

Table 2: Studies comparing small-sample performance have shown that Wilcoxon rank-based tests are nearly as powerful as t-tests under 
normal data and significantly more powerful under non-normal conditions

Condition t-test Performance Wilcoxon Test Performance Recommendation

Normal, symmetric data Most powerful 12,13,14 Nearly as powerful 12,13,14 Prefer t-test

Skewed/heavy-tailed data Power drops 12,14,15,16 Much more powerful 12,14,15,16,17 Prefer Wilcoxon

Unknown distribution Risk of error 12,13,15 Robust, good power 12,13,15,16 Prefer Wilcoxon

Small sample size Sensitive to normality 12 Robust, maintains power 12,13,15 Prefer Wilcoxon if unsure
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Descriptive Statistics:

Untreated - Mean: 61.69, Median: 18.69, SD: 208.39

Treated   - Mean: 38.83, Median: 26.85, SD: 45.71

Normality Test (Shapiro-Wilk):

Untreated p-value: 0.0000

Treated   p-value: 0.0000

Statistical Tests:

T-test p-value: 0.2796

Mann Whitney U test p-value: 0.0117

Figure 1: Comparison of simulated keratocyte density between untreated and treated groups using boxplots. Descriptive statistics, as well 
as t-test and Mann-Whitney U test results, are provided. Boxplots are ideal for visualising the distribution of continuous data and identifying 
potential outliers. In contrast, bar graphs are generally better suited for displaying categorical data (counts) or single summary statistics (like 
means), which can obscure the underlying data distribution.
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2.	 Assess distribution and sample size: For continuous out-
comes, examine the distribution using histograms, Q-Q 
plots, or normality tests (e.g. Shapiro-Wilk). The sample 
size also affects test choice. For large samples, the Central 
Limit Theorem 4 implies that the sampling distribution 
of the mean approaches normality, even if the raw data 
are non-normal. For example, the mean axial length in a 
sample of 2000 eyes may not be normally distributed, 
but a t-test could still be valid. In smaller samples, greater 
attention should be paid to distribution shape and the 
presence of outliers.

3.	 Check for outliers and skewness: Outliers can be de-
tected using boxplots, z-scores, or robust statistics. These 
should be evaluated clinically to determine whether they 
are valid values or potential data errors. In eye research, 
outliers may reflect biological variability, such as extreme 
tear osmolarity in severe dry eyes. Similarly, skewness 
should be assessed visually and quantitatively. Both con-
ditions can undermine the validity of parametric tests.

4.	 Attempt data transformation, if appropriate: When 
data are non-normal but continuous, transformation may 
enable the use of parametric methods. Common trans-
formations include:

	 • �Logarithmic (e.g. for endothelial cell counts, cytokine 
levels)

	 • �Square root or reciprocal (for count-type or right-skewed 
data)

	 • �logMAR transformation, a standard in vision science, 
which converts non-linear Snellen visual acuity scores 
into an interval-scaled, approximately normal distribu-
tion

	 If the transformed data meets assumptions, a paramet-
ric test may be applied. Interpretation should be on the 
transformed scale, or results should be back-transformed 
for reporting.

5.	 Use non-parametric methods when assumptions cannot 
be met: If the data remains non-normal after transforma-
tion or if the outcome is ordinal, a non-parametric test is 
more appropriate. For instance, in pre-post comparisons 
of central corneal thickness with heavily skewed values 
(e.g. due to advanced ectasia), the Wilcoxon signed-rank 
test should be preferred over the paired t-test.

6.	 Weigh the consequences of type I and type II errors: 
The relative importance of avoiding false positives vs. 
false negatives should inform test selection. If the goal is 
to detect subtle effects (e.g. in exploratory studies), and 
the assumptions are marginally met, a parametric test 
may be acceptable to maximise power. Conversely, if the 
consequence of a false positive is high, such as in safety 
endpoints, a more conservative approach using non-par-
ametric or permutation tests may be warranted.

7.	 Report and justify the choice transparently: Clearly 
state the rationale for test selection, especially when a 
non-parametric method is used. For example: “Because 
macular pigment optical density was right-skewed and 
remained non-normal after log transformation, a non-
parametric Mann-Whitney U test was used for group com-
parisons.” Reporting both the median with interquartile 

range (IQR) and the mean with standard deviation can be 
useful, provided it is clear which summary measure aligns 
with the inferential test that was applied.

Transparency in reporting improves the interpretability and 
credibility of findings. It is often useful to report both the 
median with interquartile range (IQR) and the mean with 
standard deviation, as long as it is clear which summary aligns 
with the inferential test applied.

Common statistical tests in eye  
and Vision Research: Applications 
and examples

This chapter details several common statistical tests used in 
eye and vision research. The selection of an appropriate test 
is a critical step in data analysis, guided by the research ques-
tion, study design, and the nature of the data. Figure 2 pro-
vides a flowchart that visually maps out this decision-making 
process, categorising tests based on the type of comparison, 
the number and independence of the samples, and the data‘s 
characteristics. 

Comparing two independent groups:  
t-Test and Mann-Whitney U Test

When an outcome is measured in two independent groups, 
such as patients receiving different treatments or fellow eyes 
from separate individuals, the appropriate statistical approach 
depends on the data’s measurement scale and distributional 
characteristics.

Independent Samples t-Test: The independent sam-
ples t-test, also known as the two-sample t-test, compares 
the means of a continuous variable between two unrelated 
groups. This test assumes that the outcome variable is ap-
proximately normally distributed within each group, that 
variances are equal (homoscedasticity), and that observations 
are independent. The t-test is a powerful and efficient method 
if these conditions are met.

Clinical example 4: In a clinical trial, 40 patients with glau-
coma are randomised to receive either Medication X (n = 20) 
or Medication Y (n = 20). After one month, the mean ± SD 
change in IOP was 3.8  ±  1.5  mmHg for Medication X vs. 
2.5 ± 1.4 mmHg for Medication Y. The data in both groups 
were approximately normally distributed. An independent 
samples t-test was used to compare the means.

Mann-Whitney U Test: The Mann-Whitney U test (also known 
as the Wilcoxon rank-sum test) is the non-parametric alterna-
tive to the t-test. It is appropriate when the data are ordinal, 
non-normally distributed, or contain outliers that violate par-
ametric assumptions. Rather than comparing means, this test 
evaluates whether one group tends to have higher values than 
the other based on ranks. It is often applied to outcomes like 
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visual analogue scale ratings for discomfort or to continuous 
variables with skewed distributions.

Clinical example 4 (continued): If, in the same IOP example, 
the data were not normally distributed (e.g., due to a sub-
group of non-responders creating a skewed distribution), 
a Mann-Whitney U test would be the correct choice. The 
test would rank all 40 IOP changes from smallest to largest 
and compare the sum of ranks between the two groups. A 
result of U = 130 with p = 0.012 would indicate a statistically 
significant difference, suggesting that patients receiving 
Medication X generally experienced greater IOP reductions 
than those on Medication Y.

 Reporting tip:   When reporting a t-test result in a journal, 
results should be reported as: “The mean ± SD change in 
IOP was 3.8 ± 1.5 mmHg for Medication X vs 2.5 ± 1.4 mmHg 
for Medication Y. This difference was statistically significant 
(two-sample t-test: t(38) = 2.75, p = 0.009).”

For a Mann-Whitney, since medians are often reported: 
“The median IOP reduction was 4.0 mmHg (IQR 2.5 to 5.0) 
with X and 2.5 mmHg (IQR 1.5 to 3.5) with Y (Mann-Whitney 
U = 130, p = 0.012).” 

It’s also good practice to mention that the test was  
two-tailed and to confirm distributional decisions (e.g., “due  
to a non-normal distribution, a non-parametric test was 
used”).

Comparing two paired measurements:  
paired t-test and Wilcoxon signed-rank test

Paired data arise frequently in EVR. Typical examples include 
pre- and post-treatment measurements from the same pa-
tient (e.g. visual acuity before and after cataract surgery) or 
comparisons between two eyes of the same individual, where 
one eye receives treatment, and the fellow eye serves as a 
control. In such cases, observations are not independent 
and must be analysed using methods that account for with-
in-subject correlation.

Paired t-test: The paired t-test is the parametric method 
for comparing two related measurements. Rather than com-
paring group means directly, the test calculates the difference 
between paired observations and assesses whether the mean 
difference significantly differs from zero. The key assumption 
is that the distribution of these difference scores (not the raw 

t-Test for  
independent 

samples

one-way  
ANOVA

k-way  
ANOVA

t-Test for  
dependent 

samples
ANOVA

WilcoxonMann-Whitney Kruskal-Wallis Scheirer-Ray- 
Hare-Test Friedman

sign test

Pearson  
Chi-Squared  

Test

Chi-Squared  
Test

F-Test

binominal 
test

dependence analysis

differences

central trends variance proportions, 
frequencies

dependent 
samples

independent 
samples

2 samples > 2 samples > 1 parameter &
> 2 samples 2 samples > 2 samples

  nominal data    ordinal data    metric data

  normal distributed    distribution free

Figure 2: A flowchart to guide the selection of common statistical tests for analysing differences between groups. The framework branches 
based on the research objective (comparing central trends, variance, or proportions). Further decisions are guided by the study design,  
specifically whether the samples are independent or dependent and the number of groups being compared. The colour and border of each 
box indicate the test‘s assumptions regarding the data‘s level of measurement and distribution: green boxes represent parametric tests  
suitable for normally distributed metric data, while red-bordered boxes indicate non-parametric (distribution-free) tests for ordinal or 
non-normally distributed data.
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data) is approximately normal. When this condition is met, the 
test is efficient and widely used.

Clinical example 5: In a study of corneal collagen cross-link-
ing, central corneal thickness (CCT) was measured before 
and six months after surgery in 15 treated eyes. The mean 
preoperative CCT was 520 µm (SD = 30), and the post
operative mean was 510 µm (SD = 32), yielding a mean 
change of –10 µm. If the distribution of these differences 
appears symmetric, a paired t-test can be applied. A result 
of t(14) = –5.0, p < 0.001, indicates a statistically significant 
thinning of the cornea post-treatment. The interpretation 
would be that CCT decreased on average by 10 µm (95 % 
CI: –13.7 to –6.3 µm).

Wilcoxon Signed-Rank Test: When the assumptions of the 
paired t-test are not met, for instance, if the distribution of dif-
ferences is skewed or contains outliers, the Wilcoxon signed-
rank test provides a robust non-parametric alternative. This 
test ranks the absolute values of the paired differences and 
evaluates whether the changes are systematically positive or 
negative. No assumption of normality is required.

Clinical example 5 (continued): In the same dataset, if sever-
al eyes show little change while others show marked thinning 
or thickening, the distribution of differences may be skewed. 
Applying the Wilcoxon signed-rank test in this scenario might 
yield p = 0.0005, similarly indicating a significant postoper-
ative decrease in CCT. The median change could then be 
reported as –9 µm, highlighting a robust central tendency 
despite the skewed distribution.

A crucial point on study design: It is essential to identify 
paired designs correctly. The sample size in a paired analysis 
is the number of pairs, not the total number of measurements. 
In the example above, n = 15 pairs, not 30 measurements. Mis-
applying an unpaired test to paired data incorrectly inflates 
the sample size and can lead to erroneously small p-values. 
Conversely, applying a paired test to unpaired data is statis-
tically invalid.

Comparing multiple independent groups:  
ANOVA and Kruskal-Wallis Test

In many clinical studies, comparisons are required across 
more than two independent groups. For example, refractive 
error may be compared across age groups, or postoperative 
outcomes may be evaluated among patients receiving dif-
ferent surgical techniques. In such cases, the use of multiple 
t-tests introduces a high risk of Type I error due to repeated 
comparisons. To avoid this, Analysis of Variance (ANOVA) 
is used as the standard parametric method for comparing 
means across three or more groups.

One-Way ANOVA: One-way ANOVA tests the null  
hypothesis that all group means are equal. It compares be-
tween-group variability to within-group variability to de-
termine whether group membership is associated with a 

statistically significant difference in the outcome. The as-
sumptions include approximate normality of the outcome 
variable within each group, homogeneity of variances, and 
independence of observations. The method is relatively ro-
bust to modest violations of variance equality if sample sizes  
are balanced.

When ANOVA yields a significant result (e.g., p < 0.05), 
it indicates that at least one group mean differs significantly. 
However, it does not specify where the difference lies. Post-
hoc comparisons, such as Tukey’s Honest Significant Differ-
ence (HSD) or Bonferroni-adjusted pairwise t-tests, are then 
used to identify which group pairs differ while controlling for 
multiple comparisons. 

ANOVA can be extended to more complex designs, such 
as two-way ANOVA, to evaluate interactions between mul-
tiple factors (e.g. lens material × wear time in a 3 × 2 factorial 
design). Non-parametric alternatives for factorial designs are 
less well-established. In practice, researchers often attempt 
data transformation to permit parametric analysis or adopt 
custom rank-based methods where available.

Clinical example 6: A study compares comfort ratings (on 
a 0 – 100 scale) for three contact lens materials: hydrogel, 
silicone hydrogel, and a novel water-gradient material (n = 30 
per group). A one-way ANOVA yields F(2,87) = 6.4, p = 0.003, 
indicating a significant difference among the materials. Post-
hoc Tukey testing then reveals that the water-gradient lenses 
are rated significantly more comfortable than both hydro-
gel (p = 0.002) and silicone hydrogel (p = 0.04), while the 
difference between hydrogel and silicone hydrogel is not 
significant (p = 0.10).

Kruskal-Wallis Test: When data are not normally distributed 
or are ordinal, the Kruskal-Wallis test serves as the non-par-
ametric alternative to one-way ANOVA. It tests whether at 
least one group differs in distribution by ranking all observa-
tions and comparing mean ranks. The null hypothesis is that 
all groups are drawn from the same distribution. If p < 0.05, 
post-hoc pairwise comparisons (e.g. Mann-Whitney U tests 
with Bonferroni correction) can identify which groups differ.

Clinical example 6 (continued): If the lens comfort data 
were skewed, a Kruskal-Wallis test would be used. A result of 
χ²(2) = 9.5, p = 0.009 would indicate significant differences. 
Subsequent pairwise Mann-Whitney tests with a Bonferro-
ni-adjusted α = 0.017 might show that the water-gradient 
lens is significantly more comfortable than the hydrogel lens 
(e.g., p = 0.003), while other comparisons do not reach the 
corrected significance threshold.

 Reporting tip:   When reporting an ANOVA result, include 
group means, standard deviations, the test statistic with de-
grees of freedom, and the p-value. For example: “The mean 
± SD comfort scores were 75 ± 10 for hydrogel lenses, 80 ± 8 
for silicone hydrogel, and 85 ± 5 for water-gradient lenses. 
One-way ANOVA showed a statistically significant differ-
ence in mean comfort scores across materials (F(2,87) = 6.4, 
p = 0.003). Post-hoc Tukey tests indicated that water-gradient 
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lenses were rated significantly more comfortable than hydro-
gel (mean difference = 10, p = 0.002) and silicone hydrogel 
lenses (mean difference = 5, p = 0.04).”

When reporting a Kruskal-Wallis result, median and IQR 
values are typically provided, along with the chi-square sta-
tistic and p-value. For example: “The median comfort scores 
were 74 (IQR 68–80) for hydrogel, 79 (IQR 75–85) for silicone 
hydrogel, and 86 (IQR 82–90) for water-gradient lenses. The 
Kruskal-Wallis test indicated a significant difference among 
groups (χ²(2) = 9.5, p = 0.009). Post-hoc Mann-Whitney U 
tests with Bonferroni correction showed that comfort was 
significantly higher with water-gradient lenses compared 
to hydrogel (U = 250, p = 0.003), but the difference be-
tween water-gradient and silicone hydrogel lenses did not 
reach the corrected significance threshold (U = 320, p = 0.02; 
α = 0.017).”

Always clarify why a non-parametric method was chosen 
if applicable, for example: “Due to skewed distributions and 
ordinal scaling of comfort scores, a non-parametric test was 
used.”

Repeated measures and longitudinal data:  
Repeated-Measures ANOVA and Friedman 
Test

In EVR, it is common for outcomes to be measured multiple 
times within the same individuals, across time points, condi-
tions, or interventions. This within-subject or repeated-meas-
ures design allows each subject to act as their own control, 
thereby reducing between-subject variability and increasing 
statistical power. However, standard ANOVA independence 
assumptions are violated because repeated measurements 
on the same individuals are correlated.

Repeated-measures ANOVA extends the one-way  
ANOVA framework to account for within-subject correlation. 
It is used when a continuous outcome is measured at multiple 
time points or under different conditions for the same sub-
jects and when the assumptions of approximate normality and 
sphericity (equal variances of the differences between all pairs 
of conditions) are met. When the sphericity assumption is 
violated, corrections such as Greenhouse-Geisser or Huynh-
Feldt are applied to adjust degrees of freedom and p-values.

Clinical example 7: In a study of postoperative visual re-
covery, best-corrected visual acuity (BCVA, logMAR) is 
measured in 10 patients at 1 week, 1 month, and 3 months 
after cataract surgery. A repeated-measures ANOVA tests 
whether mean logMAR changes significantly over time. An 
analysis yielding F(2,18) = 5.5, p = 0.013, suggests a significant 
difference across time points. Post-hoc comparisons (e.g., 
paired t-tests with Bonferroni correction) might then show 
that significant improvement occurred between 1 week and 
1 month (p < 0.01), but not between 1 month and 3 months 
(p = 0.314).

Friedman Test: When the assumptions for repeated-meas-
ures ANOVA are not satisfied, particularly in small samples 

or with ordinal or skewed data, the Friedman test offers a 
non-parametric alternative. It ranks the measurements within 
each subject and tests whether the average rank differs across 
conditions. The test evaluates whether at least one condition 
systematically differs in distribution without assuming nor-
mality or sphericity.

Clinical example 7 (continued): If the logMAR values in  
the above study were not normally distributed, the Fried-
man test would be more appropriate. A result of χ²(2) = 8.0, 
p  =  0.018 would again indicate a statistically significant 
change over time. Post-hoc pairwise Wilcoxon signed-rank 
tests could then be used to identify where the specific dif-
ferences occurred.

A note on missing data: Both repeated-measures ANOVA 
and the Friedman test typically require complete data for 
each subject across all measurement points. Missing data 
from missed visits or incomplete assessments must be han-
dled carefully, either by excluding those cases (if few) or by 
using more advanced methods like mixed-effects models, 
which can account for missing data and are beyond the scope 
of this article.

Each of these tests helps guard against the play of chance 
by providing a p-value to inform decisions about the hypoth-
eses. However, a p-value alone is not enough; the size of the 
effect and confidence intervals also need to be considered 
to understand what the data are telling.

Interpreting statistical significance: 
p-values, confidence intervals, and 
effect sizes

When reporting the results of statistical tests, research-
ers often focus on the p-value and whether it exceeds 
the conventional threshold of 0.05. However, reliance on 
“p <  0.05” alone has been widely criticised for oversimplify-
ing results.18,19,20,21 A finding can be statistically significant yet 
clinically trivial, or vice versa. To interpret results responsibly, 
especially in a clinical field, one must look beyond the p-value 
to confidence intervals and effect sizes. 

The p-Value revisited: A p-value is often misunderstood. 
It is not the probability that the null hypothesis is true, nor the 
probability that the observed effect was due to chance in the 
sense of a real vs chance cause. Rather, as defined earlier, it’s 
the probability of obtaining the observed data (or something 
more extreme) if the null hypothesis were true. For example, 
p = 0.03 in a trial of an anti-VEGF drug for macular oedema 
means: “If the drug had no real effect, there’s a 3 % chance 
we’d see an improvement as large as observed.” It does not 
mean “there’s a 97 % chance the drug works”. Many experi-
enced researchers mistakenly interpret p this way. P-values 
do not measure the probability that H₀ is true or that data 
were produced by random chance alone. 

Scientific conclusions should not be based only on wheth-
er the p-value passes a threshold (e.g. 0.05). In other words, 
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treating 0.049 as a success and 0.051 as a failure is an arbi-
trary dichotomy and can be misleading. Small changes in data 
or analysis can shift a result from significant to non-significant 
without fundamentally altering the clinical message.

One issue is the sample size: some studies have small 
sample sizes due to difficulties in recruiting participants 
(rare diseases, invasive procedures, etc.), leading to p-values 
that might be greater than 0.05 even if there is a moderate 
effect (risk of Type II error). Conversely, large datasets (e.g. 
big epidemiological studies or large trials) can produce tiny 
p-values for very small statistically “real” differences but 
clinically negligible. Both scenarios require judgment beyond 
the p-threshold.

Confidence Intervals (CIs): A CI gives a range where the 
true effect likely lies. A 95 % CI means that, over many rep-
etitions, 95 % of such intervals would contain the true value. 
For example, if a treatment improves contrast sensitivity by 
0.10 log units with a 95 % CI of 0.02 to 0.18, the true effect 
could range from 0.02 to 0.18. If the interval excludes 0, the 
result is statistically significant at the 0.05 level.

CIs reflect both precision and effect size. Clinical rele-
vance depends not just on whether an effect exists (p-value) 
but on whether it‘s large enough to matter. For this reason, 
many journals now require CIs alongside p-values.

Clinical example 7: Consider an RCT comparing two glau-
coma drops: mean IOP reduction differs by 1.0  mmHg 
(p = 0.04), with a 95 % CI of 0.1 to 1.9 mmHg. Though “signif-
icant,” the clinical importance is debatable, some specialists 
consider 20 % change mmHg necessary to justify changing 
therapy.22,23,24 Conversely, a non-significant result with a wide 
CI, e.g. 1 mmHg difference, p = 0.2, CI –0.6 to +2.6, shows un-
certainty. The effect could be meaningful or null, suggesting 
limited power. Reporting “no significant difference” without 
noting this uncertainty is misleading.

Effect sizes: CI show the plausible range for an effect, while 
effect size metrics quantify how large that effect is in a stand-
ardised way. For comparing means, for instance, Cohen’s d 
expresses the mean difference in units of the pooled standard 
deviation.25

Clinical example 8: If treatment A improves visual acuity 
by 0.1 logMAR more than treatment B, and the pooled SD 
is 0.2 logMAR, the effect size is Cohen‘s d =x0.5, which is 
considered a medium effect. If the pooled SD were only 
0.05 logMAR, the effect size would be d = 2.0, a very large 
effect.

Effect sizes like Cohen‘s d, odds ratios (for binary outcomes), 
or η² (for ANOVA) are vital because statistical significance 
alone does not indicate clinical importance. Small, clinically 
trivial effects can be highly significant in large studies, while 
large, potentially important effects may not reach statistical 
significance in small studies.

In eye care, established clinically meaningful bench-
marks help interpret results, such as a change of 0.1 logMAR  
(5 ETDRS letters) in visual acuity or 1 dB in visual field mean 

deviation. Effects smaller than these may be clinically unim-
portant even if p < 0.05; conversely, larger effects may warrant 
attention even if p > 0.05.

Given the known limitations of relying solely on p-values, 
clinical relevance is often best captured by the Minimum 
Clinically Important Difference (MCID).26 The MCID repre-
sents the smallest change in an outcome that a patient would 
perceive as beneficial or that would prompt a change in their 
clinical management. Ideally, clinical trials should be designed 
with sufficient power to detect an effect at least as large as the 
MCID, and the results should be interpreted in this context.

To ensure robust conclusions, researchers should be 
aware of several common pitfalls when interpreting statis-
tical results.
1.	 Dichotomous Thinking („p = 0.049 vs p = 0.051“): Treating 

results as a simple „success“ or „failure“ based on the 0.05 
threshold leads to dichotomous thinking. Instead of using 
ambiguous phrases like „trended towards significance,“ 
it is better to report the exact p-value and confidence 
interval. This allows the reader to assess the evidence, 
especially when the effect size is substantial but the result 
narrowly misses the significance threshold.

2.	 Multiple Comparisons and p-Hacking: When many out-
comes or analyses are performed, the chance of obtaining 
a small p-value increases by chance alone. This can lead 
to reporting spurious findings. As discussed later, adjust-
ments for multiple comparisons are often necessary to 
control this risk.

3.	 Non-significant results do not indicate the absence of an 
effect: It is a common mistake to conclude „there was no 
effect“ when p > 0.05. The correct interpretation is that 
„no statistically significant effect was found.“ The confi-
dence interval is crucial here: does it rule out a clinically 
meaningful effect, or is it very wide, suggesting the study 
was inconclusive (i.e., underpowered)? For example: “We 
did not find a significant difference in retinal nerve fibre 
layer thickness between groups (mean difference 2 µm, 
95 % CI –3 to +7, p = 0.4), suggesting any true difference 
is likely small.”

4.	 Over-reliance on „Significant“ Labels: A „statistically sig-
nificant“ result is not automatically an important one. In 
large observational studies, very small, clinically trivial 
differences can produce tiny p-values. Always circle back 
to the effect size and its clinical relevance to judge the 
practical importance of the finding.

Clinical relevance: In evidence-based practice, both the 
presence and size of effects matter. A treatment might sig-
nificantly alter an imaging parameter but offer no perceptible 
benefit to patients, limiting its value. Conversely, a large risk 
reduction in blindness from a pilot study (p = 0.1) may still 
warrant attention if the effect is clinically important but the 
sample is small.

p-values help assess whether findings are likely due to 
chance but must be interpreted in context. CIs show the 
plausible range of the effect and whether it crosses clini-
cally relevant thresholds. Effect sizes quantify magnitude 
in a standardised way. Ophthalmic research should report 
all three, p-values, CIs, and effect sizes, to ensure statistical 
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results are clinically meaningful. This approach prevents over-
statement or neglect of findings and better aligns statistical 
analysis with clinical judgment.

 Reporting tip:   When presenting results, include the effect 
size and its confidence interval, not just the p-value. For 
example: “Treatment A reduced IOP by 1.2 mmHg more than 
Treatment B (95 % CI: 0.3 to 2.1 mmHg; p = 0.01; Cohen’s 
d = 0.6).” This allows readers to judge both significance and 
clinical relevance. Always specify the test used, whether it was 
two-tailed, and justify any distributional assumptions (e.g. use 
of non-parametric methods for skewed data).

Multiple comparisons and adjust-
ments: Controlling false positives

Modern studies often measure numerous outcomes. A clinical 
trial for glaucoma might assess IOP, visual field indices, optic 
nerve imaging metrics, and quality of life, multiple endpoints. 
Similarly, an observational study may examine multiple pre-
dictors for their association with a disease outcome. 

The problem of multiple testing

Multiple testing is a common statistical issue in EVR (Table 4). 
Each time a hypothesis test is performed, there is a chance 
(α) of a false positive. When multiple tests are done, the 
possibility of at least one false positive increases. Multiple 
comparisons (or multiple testing) are a critical issue: without 
correction, one might be misled by apparently significant 
findings that are merely random noise. For example, testing 
20 independent outcomes at α = 0.05, on average, one will 
be significant by chance alone.

Adjustment techniques

Multiple comparison adjustments reduce false positives 
(Type I errors) when many tests are performed. Common 
goals include controlling the Family-Wise Error Rate (FWER), 
which is the probability of at least one false positive, and the 
False Discovery Rate (FDR), which is the proportion of false 
positives among significant results (Table 5).

Clinical example 9: Multiple endpoints in a dry eye trial
A study of a new dry eye therapy evaluates four outcomes: 
(1) Symptom score (2) Tear Break-Up Time (TBUT) (3) Corneal 
staining grade (4) Schirmer test. Each is tested at α = 0.05. 

The p-values are:
•	 Symptoms: 0.01 (significant)
•	 TBUT: 0.04 (significant)
•	 Staining: 0.20 (not significant)
•	 Schirmer: 0.03 (significant)
	� Conclusion: Without correction, researchers might claim 

the treatment significantly improved symptoms, TBUT, 
and Schirmer results.

Bonferroni Correction:
•	 Adjust α for four tests: α = 0.05 / 4 = 0.0125
•	 Only Symptoms (p = 0.01) remain significant
•	 TBUT (0.04) and Schirmer (0.03) > 0.0125  
	 → not significant
	� Conclusion: Only symptom improvement is statistically 

robust. Other effects may be trends but are not conclu-
sive.

Holm–Bonferroni Method:
•	 Order p-values: 0.01, 0.03, 0.04, 0.20
•	 Compare each to adjusted thresholds:
	 < 0.05/4 = 0.0125 → significant
	 < 0.05/3 ≈ 0.0167 → not significant
•	 Holm stops at the first non-significant test.
	� Conclusion: Only symptoms pass. TBUT and Schirmer are 

not significant.

Benjamini–Hochberg (FDR 5 %):
•	 Sorted p-values: 0.01, 0.03, 0.04, 0.20
•	 Compare each to (i/4) × 0.05:
	 < 0.0125 (i = 1) → yes
	 > 0.025 (i = 2) → no → stop
	 Conclusion: Only symptoms meet the FDR threshold.

Interpretation: All three methods agree: only the symptom 
improvement is statistically reliable. TBUT and Schirmer do 
not reach significance after correcting for multiple compar-
isons. If these outcomes are highly correlated (e.g. symptom 
scores improve with TBUT), Bonferroni may be overly strict. 
In such cases, alternative methods like Hochberg’s step-up 
or no correction may be considered, but only if co-primary 
outcomes were pre-specified with a strong clinical rationale. 
Corrections are most important when testing many out-
comes without prior justification.
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Table 5: Overview of common methods used to adjust for multiple testing in research studies, highlighting when each method  
is recommended, how the correction is applied, and key considerations to guide proper usage.

Method When to Use How to Apply the Correction Key Considerations

Bonferroni 
Correction

• Suitable when the number of 
comparisons is relatively small 
and a very stringent control of 
Type I error is required.
• Often used for confirmatory 
analyses where false positives 
must be minimised.

1. Set your chosen familywise  
error rate, e.g. αFWER = 0.05.
2. Count the total number  
of comparisons, m.
3. Adjust the per-comparison sig-
nificance level to αadj = αFWER / m.
4. Reject H₀ for a given test  
if p < αadj.

• Very conservative, increasing Type II 
error (chance of false negatives).
• Best used for a small set of primary 
outcomes.
• Simple to implement and commonly 
recognised by reviewers and journals.

Holm- 
Bonferroni

• Recommended as a  
stepwise, less conservative 
alternative to Bonferroni.
• Useful when the number  
of tests is moderate,  
balancing Type I and Type II 
error control.

1. Sort p-values in ascending  
order (p(1) ≤ p(2) ≤ … ≤ p(m)).
2. Compare p(i) to adjusted  
thresholds: αFWER / (m − i + 1).
3. Reject H₀ in order until a  
p-value fails its threshold test.

• Controls the familywise error rate 
(FWER) in a stepwise manner.
• Less strict than the standard  
Bonferroni correction.
• Protects against inflated false-positive 
rates but has more power than  
Bonferroni.

Benjamini-
Hochberg 
(BH)

• Appropriate for exploratory 
or “discovery” analyses with 
many comparisons.
• Commonly used in large-
scale data (e.g. genomics, 
proteomics) to control the 
False Discovery Rate (FDR).

1. Choose a desired FDR level,  
e.g. 0.05.
2. Sort p-values in ascending  
order: p(1) ≤ p(2) ≤ … ≤ p(m).
3. For each p(i), find the largest  
i satisfying p(i) ≤ (i / m) × αFDR.
4. Reject H₀ for all tests whose 
p-values are ≤ that threshold.

• Controls the proportion of false  
positives among all rejected hypotheses, 
rather than eliminating them outright.
• More powerful than Bonferroni-type 
methods for large sets of tests but allows 
some false positives (accepts FDR rather 
than FWER).
• Widely used when the emphasis is on 
controlling overall false discovery rather 
than guaranteeing zero false positives.

Clinical example 10: Multiple arms in a surgical trial
A study compares three surgical techniques (A, B, C) for 
correcting refractive error.
Outcomes include:
1.	 Post-operative refraction
2.	 Uncorrected distance visual acuity (UDVA)

Step 1: Initial comparison – One-Way ANOVA
Researchers run a one-way ANOVA on post-op refraction 
to test whether there is any overall difference among the 
three groups.
Result: ANOVA p = 0.02 → suggests at least one group differs 
significantly in mean refraction.
Conclusion: ANOVA tells you a difference exists, but not 
which groups differ.

Step 2: Post-Hoc Testing – Which groups differ?
There are three possible pairwise comparisons: (i) A vs B (ii) 
A vs C (iii) B vs C

Option A: Correct Approach – Tukey’s HSD or Dunnett’s 
Test: These are post-hoc methods designed to control for 
multiple comparisons:

1.	� Tukey‘s HSD compares all group pairs and keeps the 
Family-Wise Error Rate (FWER) at 0.05.

2.	� Dunnett‘s test compares each group to a control group 
(e.g. A vs B, A vs C), also controlling FWER.

Without adjustment, running multiple pairwise tests increase 
the risk of false positives. For 3 comparisons at α = 0.05 each, 
the chance of at least one false positive is ~14% (1 – 0.95³).

Option B: Incorrect Approach – Three Unadjusted t-tests: 
If a researcher ran three independent t-tests at α = 0.05:
A vs B: p = 0.04
A vs C: p = 0.03
B vs C: p = 0.08
They might conclude that A differs from B and C. But this 
approach inflates the Type I error rate because each test is 
treated in isolation. Even if no real difference exists, one test 
could appear significant by chance.

Conclusion: Correct interpretation with Tukey’s test: Only 
report pairwise differences if they remain significant after 
Tukey adjustment. Tukey accounts for the number of com-
parisons, so p-values are slightly higher, but false positives 
are controlled.
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Step 3: Interpretation and conclusion
The ANOVA shows there is a difference in refraction between 
at least two surgical groups. The Tukey test identifies which 
specific pairs differ, while keeping the error rate under con-
trol. If only A vs C is significant after adjustment, the conclu-
sion is: “Surgical method A resulted in significantly different 
post-op refraction compared to C (p = 0.03, Tukey-adjusted), 
with no significant differences between A and B or B and C.”

There is ongoing debate about whether adjustment for mul-
tiple comparisons is necessary when outcomes are pre-spec-
ified and reflect distinct aspects of the study’s objectives. 
Some argue that outcomes may be reported individually 
with appropriate caution if they are clinically meaningful and 
independent.27,28,29 However, the standard practice clearly 
distinguishes primary from secondary outcomes and applies 
the strictest statistical threshold to the primary endpoint. 
In contrast, adjustments are generally recommended for 
subgroup analyses and exploratory outcomes; at the very 
least, such findings should be explicitly labelled as explor-
atory and interpreted as hypothesis-generating rather than 
confirmatory.

A common approach in practice is to predefine a single 
primary outcome tested at α = 0.05, with other outcomes 
treated as secondary, either reported descriptively or requir-
ing confirmation in future studies. CONSORT guidelines 30 
recommend specifying which outcomes are primary and 
whether adjustments for multiple comparisons were made. 
When multiple tests are performed without adjustment, 
authors should disclose this and interpret it cautiously. For 
example, a secondary outcome with p = 0.03 may be de-
scribed as “nominally significant, unadjusted for multiple 
comparisons.”

 Reporting tip:   Authors should clearly state whether adjust-
ments for multiple comparisons were applied and specify the 
method used. For example:
1.	 “A Bonferroni correction was applied for the three primary 

comparisons, setting the threshold for significance at  
p < 0.017.”

2.	 “All pairwise post hoc comparisons were adjusted using 
Tukey’s method to control the family-wise error rate.”

3.	 “Given the number of secondary endpoints, results are 
interpreted descriptively. For instance, tear cytokine levels 
differed nominally between groups (p = 0.03) but did not 
meet the adjusted significance threshold (p < 0.01).”

Transparent reporting ensures appropriate interpretation of 
results and guards against overstating findings due to inflated 
Type I error.

Balancing Type I and Type II errors: Adjusting for multiple 
comparisons reduces the risk of false positives (Type I errors) 
but increases the risk of false negatives (Type II errors), po-
tentially obscuring true effects. For example, if a treatment 
genuinely influences several related outcomes, a strict cor-
rection, such as the Bonferroni method, may make it harder to 
detect those effects. In such cases, researchers may consider 
using composite outcomes or multivariate methods (e.g.  

MANOVA) to assess an overall effect across endpoints. While 
these approaches are beyond the current scope, the key prin-
ciple remains: the more tests performed, the more cautious 
one must be in interpreting individual p-values. 

Transparent reporting and  
best practices

Robust study design and appropriate statistical analysis con-
tribute little to EVR if the results are not reported transpar-
ently. Clear communication of methods and findings helps 
readers evaluate how conclusions were reached and whether 
they apply in clinical contexts. Two cornerstone guidelines (1) 
CONSORT 30 (Consolidated Standards of Reporting Trials) for 
randomised controlled trials and (2) STROBE 31 (Strength-
ening the Reporting of Observational Studies in Epidemi-
ology) for observational studies, call for detailed accounts 
of statistical procedures. For example, CONSORT item 12 
requires specifying “statistical methods used to compare 
groups for primary and secondary outcomes,” while STROBE 
requests explanations of how missing data were handled and 
whether sample size calculations were performed. To find the 
most appropriate validated reporting guidelines, refer to the 
EQUATOR network.

Beyond methodological rigour, transparent statistical 
reporting is an ethical imperative. In EVR, findings directly 
influence patient management; misreporting or selective 
presentation of data can lead to suboptimal decisions and 
tangible harm. Transparency helps patients benefit from gen-
uine scientific progress rather than misleading claims. It also 
preserves the integrity of the scientific record by reducing 
research waste and supporting reproducibility. Research-
ers have a moral and professional obligation to report all 
outcomes, including non-significant or unfavourable ones, 
to avoid distorting the evidence base. Transparency fosters 
accountability, enabling peers to verify analyses and assess 
whether findings are robust enough to guide clinical practice. 
Adherence to ethical frameworks such as the Declaration of 
Helsinki (2024) and Good Clinical Practice, alongside report-
ing standards like CONSORT and STROBE, reinforces the 
duty to disseminate results responsibly and maintain public 
trust in research.

Conclusion

Rigorous statistical testing constitutes a cornerstone of robust 
clinical decision-making in eye care. This article extends the 
foundational concepts of descriptive statistics (introduced 
in Part 1) by outlining core inferential principles and illustrat-
ing how Type I and Type II errors directly impact the validity 
of research outcomes. Clear guidance on parametric and 
non-parametric tests has demonstrated how data character-
istics and study designs determine the most suitable analytic 
approach. Emphasising effect sizes and confidence intervals 
alongside p-values highlights the distinction between sta-
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tistical significance and clinical relevance. Furthermore, the 
review of multiple-comparison procedures underscores the 
necessity of transparent reporting to prevent inflated error 
rates and misleading conclusions, particularly pertinent in 
ophthalmic studies with multiple endpoints. The practical 
examples and recommendations for reporting standards, such 
as STROBE and CONSORT, reinforce that sound statistical 
methodology and clear communication of results strengthen 
scientific rigour and foster evidence-based practice. Ulti-
mately, by advancing statistical literacy within optometry 
and ophthalmology, patient care benefits from more reliable 
evidence, paving the way for improved treatment strategies 
and long-term outcomes.
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Table 6: Key recommendations

Recommendation Reporting tip

Pre-specification of outcomes Clearly define primary and secondary outcomes in the study protocol.  
State hypotheses a priori to reduce data dredging.

Multiple comparisons Disclose methods for adjusting multiple testing (e.g. Bonferroni, Holm).  
If no adjustment is made, justify the rationale based on clinical distinctiveness.

Descriptive statistics Report group-wise summaries (e.g. mean ± SD, median and IQR) before inferential  
tests to aid interpretation of variability and effect magnitude.

Confidence Intervals Always present 95% confidence intervals alongside p-values to convey precision  
and potential clinical relevance.

Exact p-values Report exact p-values (e.g. p = 0.034) rather than thresholds (e.g. p < 0.05) to avoid  
binary interpretations of significance.

Avoiding misleading terminology Use “statistically significant” strictly for test results. Use “clinically important” or  
“clinically significant” only when justified by clinical thresholds.

Unit of analysis Specify whether the analysis is per-eye or per-patient. For paired-eye data, account  
for within-subject correlation (e.g. mixed models, paired tests).32

Handling of assumptions Report assumptions checked (e.g. normality, equal variances). Justify choice of  
non-parametric tests where assumptions are violated.

Missing data Describe handling of missing data (e.g. complete-case analysis, imputation).  
Quantify missingness and discuss potential bias.

Software and versions Optionally cite software used for analysis (e.g. R v4.2.1, SPSS v29) to support  
reproducibility.

Flow diagrams and clear figures For trials, include CONSORT flow diagrams. Use visual summaries (e.g. histograms,  
boxplots) to display group differences.

Referencing reporting guidelines State compliance with CONSORT (for RCTs) or STROBE (for observational studies)  
to reinforce transparency and reporting standards.

Illustrative example Provide detailed example analyses (e.g. primary outcome, adjustment methods,  
CI and p-value reporting, unit of analysis) to model good practice.

Ethical and practical considerations Transparently report statistical methods, outcome definitions, and limitations  
to support validity and enable data synthesis in future research.
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