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Abstract

Purpose. To enhance statistical literacy in eye and vision re-
search through practical guidance on hypothesis testing, test
selection, and interpreting inferential statistics. The goal is to
reduce common analytical errors and support more clinically
meaningful conclusions in ophthalmic studies.

Material and Methods. A narrative literature review was con-
ducted using PubMed, Scopus, and Web of Science to iden-
tify best practices in hypothesis testing, error control, and
test selection relevant to clinical research in ophthalmology
and optometry. Simulated datasets, based on real-world
clinical scenarios, were generated in Python to illustrate
core concepts. Worked examples demonstrate the impact
of sample size, data distribution, and error type on statistical
conclusions.

Results. Common misinterpretations of p-values and frequent
misuse of statistical tests were identified. The review explains
how reducing the significance level (a) increases Type Il error
risk unless the sample size is increased. A structured decision
framework was developed to aid the choice between para-

metric and non-parametric tests, including when assumptions
are violated. Simulations and clinical examples demonstrate
how effect size, variability, and multiple testing adjustments
affect results.

Conclusion. Statistical missteps in eye research often arise
from poor test selection, inadequate power, or overreliance
on p-values without context. This article advocates for the
use of confidence intervals, effect sizes, and transparent
reporting to enhance the credibility of research findings.
Following structured analytic frameworks and established
reporting guidelines (e.g. CONSORT, STROBE) helps ensure
that statistical conclusions align with clinical relevance, ulti-
mately supporting better patient care and more trustworthy
research outcomes.
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Introduction

Inferential statistics underpin evidence-based clinical re-
search by allowing conclusions to be drawn about popula-
tions from sample data. In eye and vision research (EVR),
the appropriate selection and application of statistical tests
are essential for ensuring that study findings are valid and
clinically meaningful. Despite widespread statistical educa-
tion, persistent data analysis errors have been documented
across biomedical literature.! In ophthalmology, recurring
issues include incorrect units of analysis, improper handling of
multiple comparisons, and misinterpretation of results.2 These
are not trivial mistakes; they can lead to flawed conclusions
and potentially harmful clinical decisions, resulting in wasted
resources and diminished research impact.® Enhancing sta-
tistical literacy among clinicians and researchers is critical to
reducing avoidable errors in eye and vision studies.

Building on Part 14, this series (Part 2) emphasises infer-
ential statistics, focusing on hypothesis testing and select-
ing the appropriate test for various study designs and data
types. Part 1 introduced foundational concepts, including
data types (nominal, ordinal, interval, ratio), data preparation
techniques, and the importance of descriptive statistics and
data visualisation for understanding sample characteristics.
This second instalment builds directly on that foundation by
addressing persistent shortcomings in statistical practice. For
example, ophthalmic trials have frequently demonstrated low
statistical power and elevated risks of Type |l errors (false neg-
atives).5 Inadequate attention to test assumptions and power
calculations may lead to the missed detection of clinically
relevant effects or the reporting of spurious results due to
uncontrolled multiple comparisons. The clinical consequenc-
es of such errors are substantial. Day-to-day decisions in eye
care, such as whether to adopt a new therapy or interpret a
diagnostic test, depend on reliable evidence. Inappropriate
test selection or misinterpretation of results undermines that
reliability. Conversely, robust statistical methods strengthen
the evidence base, enabling the detection of meaningful
effects and guiding practice with greater confidence. Well-
conducted ophthalmic trials have demonstrated how rigorous
analysis can inform treatment guidelines and enhance patient
care.5%7 Strengthening statistical literacy among eye care
professionals is crucial for enhancing the quality of research
and improving the effectiveness of clinical decision-making.

Methods

The methods used in this article have been described in
Part 1 of this series.# In brief, a narrative literature review
was conducted using PubMed, Scopus, and Web of Science
databases to identify best practices in statistical testing for
EVR. Simulated datasets were created in Python to illus-
trate core concepts, reflecting typical clinical scenarios in
ophthalmology, optometry, and vision science. All data are
synthetic and intended solely for educational use. To rein-
force key principles, supplementary materials include worked
examples.

2 ‘ OCL - Volume 5 - No.7 - September 2025

Hypothesis testing principles
in eye & vision research

Most clinical research begins with a question: for example,
“Does treatment A improve (e.g. visual acuity) more than
treatment B in patients with (e.g. age-related macular degen-
eration)?” Hypothesis testing provides a formal framework to
answer such questions with quantitative evidence. The basic
principle is to pose two opposing hypotheses and use sample
data to determine which is better supported.

1. Null Hypothesis (Ho): Generally, a statement that there is
no difference between groups or no effect of an interven-
tion. It posits that any observed difference in outcomes
is due to chance. For our example, Ho might state, “There
is no significant difference in mean visual acuity improve-
ment between treatment A and treatment B.”

2. Alternative Hypothesis (H, or H,): Directly following the
null hypothesis is the alternative hypothesis, which is the
statement of an effect or difference - what the research-
er hopes or expects to find. In the example, H; might be
“Treatment A leads to greater mean improvement in visual
acuity than treatment B.”

Phrasing the null and alternative hypotheses correctly is
one of the most crucial steps in designing and conducting
research, as they define every subsequent step. Data are
collected once the hypotheses are described, and an appro-
priate statistical test is selected based on the study design
and data characteristics. The analysis yields a test statistic
and a corresponding p-value. The p-value represents the
probability of obtaining data as extreme as (or more extreme
than) what was observed, assuming the null hypothesis is
true.8? It is a measure of compatibility between the observed
data and the null hypothesis, not the probability that the null
hypothesis is true.

A p-value of 0.03 means that if there were truly no differ-
ence between the treatments, there would be a 3% chance of
observing a result as extreme as the one found, purely due to
random variation. This does not mean there is a 97 % chance
that the alternative hypothesis is correct. That is a common
misinterpretation. The p-value provides information about
the null hypothesis, not about the alternative. It reflects
how compatible the observed data are with the assumption
that there is no effect or difference. Statistical tests do not
directly prove the null hypothesis is false. Instead, if the data
are unlikely under the assumption that the null hypothesis is
true, this is considered evidence against the null hypothesis
and in favour of the alternative.

The researcher must determine, based on professional
judgment, risk assessment, and review of relevant literature,
how much uncertainty is acceptable in a given study. This
pre-specified threshold for uncertainty is known as the signif-
icance level, often denoted by alpha (a). It defines the maxi-
mum probability of making a Type | error, incorrectly rejecting
the null hypothesis when it is actually true. A significance level
(denoted a orType | error) is set before data analysis, typically
at 0.05, to guide decision-making. If p<a, the null hypothesis
isrejected, and the result is said to be statistically significant.
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Table 1:. Simulated impact of sample size, standard deviation, and mean intraocular pressure (IOP) difference on p-values in two-group
t-tests comparing a hypothetical IOP-lowering drug to placebo. Baseline IOP is fixed at 15 mmHg for both groups. This table illustrates how
p-values are affected by sample size and variability, emphasising the importance of interpreting statistical significance in the context of
clinical relevance.

Sample Size* Standard Baseline Mean
per Group Deviation** 10P IOP After
(mmHg) Treatment
(Drug)
(mmHg)

10 1 25 245

10 5 25 24.5

10 1 25 19.0

10 5 25 19.0

20 1 25 245

20 5 25 245

20 1 25 19.0

20 5 25 19.0

50 1 25 245

50 5 25 245

50 1 25 19.0

50 5 25 19.0
100 1 25 245
100 5 25 245
100 1 25 19.0
100 5 25 19.0
1000 1 25 24.9

Mean P-value Significant
IOP After (Y/N)
Treatment

(Placebo)

(mmHg)

25 0.5 0.278 N
25 0.5 0.826 N
25 4.0 0.000 Y
25 4.0 0.015 Y
25 0.5 0.122 N
25 0.5 0.754 N
25 4.0 0.000 Y
25 4.0 0.001 Y
25 0.5 0.014 Y
25 0.5 0.618 N
25 4.0 0.000 Y
25 40 0.000 Y
25 0.5 0.001 Y
25 0.5 0.480 N
25 40 0.000 Y
25 40 0.000 Y
25 0.1 0.025 Y

*Sample Size: As the sample size increases, the p-value decreases, indicating higher statistical power to detect a given effect size.

** Standard Deviation: A higher standard deviation (greater variability) results in higher p-values for the same effect size and sample size, making it more difficult

to detect significant differences.

*** Effect Size: Larger effect sizes lead to lower p-values, indicating a higher likelihood of detecting a true difference between groups.

If p 2 a, the null hypothesis is not rejected. However, failure
to reject Ho does not imply it is true; it may simply reflect
insufficient evidence, often due to small sample size or high
variability. The balance between having sufficient evidence
to detect a true effect and managing error rates is addressed
during the study design phase through a priori power calcu-
lations to determine an adequate sample size.

In EVR, where numerous biological and measurement
factors may influence outcomes such as visual acuity, IOP, or
retinal thickness, interpreting p-values in isolation can be mis-
leading. A statistically significant result does not necessarily
imply clinical significance. For example, a mean |OP reduc-
tion of 0.5 mmHg with a p-value of 0.04 may be statistically
significant but clinically negligible. Conversely, a p-value just
above 0.05, say, 0.06, should not automatically be dismissed,
especially if the effect size is meaningful and consistent with
prior evidence. Moreover, p-values are sensitive to sample
size. Extensive studies can produce very small p-values for
trivial effects, while small studies may yield non-significant

p-values despite clinically important differences (Table 1).
Therefore, effect sizes and confidence intervals should always
accompany p-values to provide context.

The confidence interval indicates the range within which
the true effect is likely to lie, and its width reflects the preci-
sion of the estimate. While p-values play a central role in hy-
pothesis testing, they should not be treated as the sole arbiter
of truth. Interpreting them requires careful consideration of
the study design, effect size, confidence intervals, and the
clinical context. Overreliance on arbitrary thresholds (e.g.,
p <0.05) without proper context risks drawing misleading
conclusions, (Table 1).

Clinical example 1: To illustrate the interpretation of a p-val-
ue, consider a clinical trial comparing a new eyedrop to stand-
ard treatment for lowering |OP. After four weeks, the mean
IOP reduction is 3.0 mmHg in the treatment group (range:
0.5t0 6.0 mmHg) and 2.0 mmHg in the control group (range:
-0.5 to 5.5 mmHg). A two-sample t-test yields p=0.04. This
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suggests that, assuming no true difference exists between
treatments (i.e., the null hypothesis is true), there is a 4%
chance of observing a difference of 1.0 mmHg or more purely
by chance. Theresult is statistically significant at the conven-
tional threshold of a=0.05. While the difference is statistical-
ly significant, this does not guarantee clinical relevance. The
observed ranges show natural variation within each group,
which occurs even when treatments are similarly effective.

Type | and Type Il errors

In hypothesis testing, there are two types of errors that can
occur in the decision-making process, both of which have
special relevance in clinical research:

1. Type | Error (False Positive): This occurs when we reject
the null hypothesis when it is actually true. In essence,
this is a ,false alarm,” concluding there is a difference or
an effect when, in reality, there is none. The probability of
making a Type | error is determined by the significance
level, a. For example, with a = 0.05, there is a 5% risk of
.discovering” a difference that isn‘t truly there. In EVR, a
Type | error could mean believing a new drug improves
visual acuity when it has no effect, potentially leading to
the adoption of an ineffective treatment.

2. Typell Error (False Negative): This occurs when we fail to
reject the null hypothesis when it is actually false. In other
words, this is a ,missed opportunity” - failing to detect a
real effect or difference. The probability of a Type Il error
is denoted by B. The statistical power of a test, which is the
probability of correctly detecting a true effect, is calculat-
edas (1-B).In EVR, aType Il error could mean overlooking
a real benefit of a new glaucoma therapy because the
study was too small or the data too variable. Historically,
less attention was given to controlling Type Il errors, but
this is changing, as underpowered studies have significant
ethical and scientific implications. For example, a review
of ophthalmology trials found that a large portion had a
high risk of Type Il errors, meaning real, clinically relevant
effects could easily have been missed due to insufficient
sample sizes.5

The researcher must balance two types of errors in statistical

testing: false positives (Type | errors) and false negatives (Type

Il errors). This trade-off can be illustrated using the image of

a bowl filled with sand, where the sand represents the total

amount of potential error. Removing sand from one side of

the bowl simply results in a mound forming on the other side.

The total amount of error remains the same unless the size

of the bowl is increased. In statistical terms, reducing the

significance level (a) to lower the risk of false positives usually
increases the risk of false negatives (denoted by B), unless the
sample size is increased. To manage this balance, researchers
use study design strategies, including formal sample size
calculations, to ensure the study has adequate power. Power
refers to the probability of correctly detecting a true effect,

and typical targets are 80 % or 90 %, which correspond to B

values of 0.2 or 0.1, respectively. For example, when design-

ing an ophthalmic clinical trial, the researcher calculates the
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required number of participants needed to detect a clinically
meaningful difference, such as a five-letter improvement in
visual acuity, with high power at the selected a level.

One-Tailed versus Two-Tailed Tests

Another consideration in hypothesis testing is whether to
use a two-tailed (two-sided) or one-tailed test. A two-tailed
test assesses for any difference in either direction, while a
one-tailed test only examines a difference in a pre-specified
direction. For example, when evaluating a new myopia control
lens against a standard lens, a two-tailed H, might be: “There
is a difference in mean myopic progression between lenses,”
capturing both slower and faster progression. A one-tailed H,
might state: “The new lens slows myopia progression more
than the standard lens,” excluding the possibility of a nega-
tive effect. Although one-tailed tests offer greater power to
detect an effect in the specified direction (since the entire
a is allocated to one tail), they carry a substantial limitation:
they ignore effects in the opposite direction, which may be
clinically important or harmful. In the above example, if the
new lens actually worsens progression, a one-tailed test fo-
cused only on improvement would fail to detect it.

For this reason, two-tailed tests are standard in clinical
research.’” The small loss in power is outweighed by the eth-
ical and scientific importance of being open to detecting
unexpected harm. Most peer-reviewed journals discourage
or reject the use of one-tailed tests unless a very strong
justification is provided, typically only when an effect in the
opposite direction is truly impossible or irrelevant, which is
rare in medical research.

Clinical example 2: A clinical trial comparing a new retinal
implant designed to restore vision in patients with advanced
photoreceptor degeneration to standard care. The primary
outcome is a functional visual score. The researchers hypoth-
esise improvement with the implant. If they used a one-tailed
test (a = 0.05, one-tailed), they might achieve significance
with a smaller sample size if the implant is effective. However,
if the implant unexpectedly caused some damage, leading to
worse scores, a one-tailed test focused only on improvement
would not register this decline as statistically significant, even
if it was large. A two-tailed test (a = 0.05 split into 0.025 in
each tail) would require more data to support improvement,
but it would also flag a significant deterioration.

Two-tailed tests are almost always preferred in eye and vision
research. They protect against unanticipated harm and align
with the principles of ethical clinical investigation. One-tailed
tests should be reserved for exceptional cases with clear,
pre-defined justification.
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Parametric vs non-parametric
tests: Assumptions and decision
framework

Choosing the right statistical test depends on the type of data
and whether certain assumptions are met. Broadly, statisti-
cal tests can be classified as parametric or non-parametric
(distribution-free). Parametric tests assume that the data
follow a specific distribution (typically a normal distribution
for continuous data) and utilise model parameters, such as
means and standard deviations. Non-parametric tests make
fewer assumptions about the data’s distribution and often rely
on the rank-ordering of the data rather than the raw values.
Both tests are widely used in EVR, and each has its place.
Understanding when to use a parametric vs a non-parametric
test is essential for valid analysis.

Parametric tests and their assumptions

Parametric tests are typically applied to continuous, approx-
imately normally distributed data. Common assumptions
include:

1. Normality: The data should follow a normal distribution.
This can be tested using normality tests, such as the
Shapiro-Wilk Test.

2. Homoscedasticity: The variances across comparison
groups should be equal. This can be assessed using
Levene’s Test, which checks for equal variances among
the different groups.

3. Independence: The observations should not be corre-
lated. This is typically ensured by the study design (e.g.,
recruiting separate individuals for each group) rather than
a formal statistical test. For non-independent data, such
as measurements from two eyes of the same person or
repeated measures over time, specific analytical methods
that account for the correlation must be used.

These assumptions need to be checked. If they are satisfied,
parametric tests are powerful and yield accurate p-values.
A typical example is the Student’s t-test, which compares
the means of two independent groups. Another is ANOVA
(Analysis of Variance), which compares means across three or
more groups. For repeated measurements, repeated-meas-
ures ANOVA is used, which adds a further assumption of
sphericity (a specific structure of equal variances of the dif-
ferences between conditions). Violating these assumptions
can lead to incorrect results; for instance, using an ordinary
t-test on highly skewed data can inflate the Type | error rate
or reduce power.

Non-Parametric tests and their applications

Non-parametric tests do not assume a specific distribution
and are more flexible for non-normal, skewed, or ordinal data.
They typically work by ranking the data across groups and
comparing the distribution of these ranks.

A well-known example is the Mann-Whitney U test (the
Wilcoxon rank-sum test), which compares two independent
groups based on the sum of ranked observations. It assumes
independence and equal shape of distributions under the
null hypothesis.

Other common non-parametric tests include:

1. Wilcoxon signed-rank test: for paired data (e.g. pre-and
post-treatment in the same eye)

2. Kruskal-Wallis test: for comparing more than two inde-
pendent groups.

3. Friedman test: the non-parametric counterpart to
repeated-measures ANOVA.

These methods are particularly suitable when data are not

normally distributed and transformation“ is inappropriate

(e.g., if it makes the results difficult to interpret clinically) or

unsuccessful (i.e., the data remain skewed even after trans-

formation).

When to choose non-parametric
over parametric

A commonly cited rule is to use parametric tests when their
assumptions are met; otherwise, non-parametric tests are
safer. In practice, clinical data are rarely perfectly normal. For
example, corneal endothelial cell counts can be skewed, and
visual acuity (especially in Snellen lines) is bounded, making
parametric assumptions questionable. Outliers such as un-
usually high IOP or anomalous visual field indices are also
common, potentially distorting parametric results.

Parametric tests like the t-test are sensitive to such issues.
A single outlier can substantially shift the mean and inflate
variance, increasing the risk of Type | or Il errors. In contrast,
non-parametric tests based on ranks (e.g. Mann-Whitney U)
are more robust, meaning they are less affected by skew-
ness and outliers. These tests compare medians or over-
all rank patterns, which are more robust in the presence of
non-normality.

This robustness, however, comes at a cost: a slight reduc-
tion in statistical power when parametric assumptions are
met. For instance, the asymptotic relative efficiency (ARE)
of the Mann-Whitney U test compared to the t-test is ap-
proximately 0.955." This means that the Mann-Whitney test
requires approximately 4.5 % more subjects to achieve the
same power as a t-test under normal conditions. In most
studies, this difference is minimal and easily justified by the
gain in robustness under imperfect data conditions.

Crucially, the performance advantage shifts under
non-normal conditions. If the data are heavily skewed or
contain outliers, parametric tests may show inflated Type |
error rates or lose power, while non-parametric tests remain
valid or even superior.

Clinical example 3: In a simulated scenario with extreme
skew or kurtosis (Figure 1), the non-parametric test can de-
tect differences that the parametric test completely misses,
effectively having infinite relative efficiency. To illustrate, a
skewed distribution of keratocyte density in corneal tissue
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Descriptive Statistics:
Untreated - Mean: 61.69, Median: 18.69, SD: 208.39
Treated - Mean: 38.83, Median: 26.85, SD: 45.71

Normality Test (Shapiro-Wilk):
Untreated p-value: 0.0000
Treated p-value: 0.0000

Statistical Tests:
T-test p-value: 0.2796
Mann-Whitney U test p-value: 0.0117

Figure 1: Comparison of simulated keratocyte density between untreated and treated groups using boxplots. Descriptive statistics, as well
as t-test and Mann-Whitney U test results, are provided. Boxplots are ideal for visualising the distribution of continuous data and identifying
potential outliers. In contrast, bar graphs are generally better suited for displaying categorical data (counts) or single summary statistics (like

means), which can obscure the underlying data distribution.

where a few samples have very high counts. If two groups
(treated vs untreated) are with a t-test compared, those high
outliers could dominate the mean and variance estimates,
possibly obscuring a consistent difference in the bulk of the
data. A Mann-Whitney U test, which ranks all values, will
mitigate the effect of those outliers and may detect that
overall, ranks in the treated group are higher, even if means
are not straightforward to compare.

Non-parametric methods are also advantageous in small-sam-
ple studies. When the sample size is small (e.g., < 25 per
group), assumptions about the distribution are harder to
verify. Studies comparing small-sample performance have
shown that Wilcoxon rank-based tests are nearly as powerful
as t-tests under normal conditions and significantly more
powerful under non-normal conditions (Table 2).

While parametric tests are powerful and efficient under
ideal conditions, non-parametric methods offer robustness,
flexibility, and practical advantages in the complex and often
imperfect reality of clinical eye research. Understanding their

respective assumptions and trade-offs enables researchers to
select the most suitable test for their data, thereby enhancing
the reliability and validity of their research findings.

A practical framework for choosing between
parametric and non-parametric tests

The selection of an appropriate statistical test should be
grounded in the outcome’s measurement level, the data
distribution characteristics, sample size, and the study’s tol-
erance for error types. The following steps offer a structured
approach for test selection:

1. Considerthe measurement level: If the outcome variable
is nominal (categorical) or ordinal, parametric tests such
as t-tests or ANOVA are not valid. Instead, non-parametric
or categorical data methods should be used. For example,
glaucoma severity grades on an ordinal scale should be
analysed using a Mann-Whitney U test or, if treated cat-
egorically, a chi-square test, not a t-test.

Table 2: Studies comparing small-sample performance have shown that Wilcoxon rank-based tests are nearly as powerful as t-tests under
normal data and significantly more powerful under non-normal conditions

Condition t-test Performance Wilcoxon Test Performance Recommendation

Normal, symmetric data Most powerful 121314 Nearly as powerful 21314 Prefer t-test

Skewed/heavy-tailed data Power drops 12141516 Much more powerful 1214151617 Prefer Wilcoxon

Unknown distribution Risk of error 121315 Robust, good power 12131516 Prefer Wilcoxon

Small sample size Sensitive to normality 2 Robust, maintains power 21315 Prefer Wilcoxon if unsure
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2. Assessdistribution and sample size: For continuous out-
comes, examine the distribution using histograms, Q-Q
plots, or normality tests (e.g. Shapiro-Wilk). The sample
size also affects test choice. For large samples, the Central
Limit Theorem# implies that the sampling distribution
of the mean approaches normality, even if the raw data
are non-normal. For example, the mean axial length in a
sample of 2000 eyes may not be normally distributed,
but a t-test could still be valid. In smaller samples, greater
attention should be paid to distribution shape and the
presence of outliers.

3. Check for outliers and skewness: Outliers can be de-
tected using boxplots, z-scores, or robust statistics. These
should be evaluated clinically to determine whether they
are valid values or potential data errors. In eye research,
outliers may reflect biological variability, such as extreme
tear osmolarity in severe dry eyes. Similarly, skewness
should be assessed visually and quantitatively. Both con-
ditions can undermine the validity of parametric tests.

4. Attempt data transformation, if appropriate: When
data are non-normal but continuous, transformation may
enable the use of parametric methods. Common trans-
formations include:

« Logarithmic (e.g. for endothelial cell counts, cytokine
levels)

- Square root or reciprocal (for count-type or right-skewed
data)

- logMAR transformation, a standard in vision science,
which converts non-linear Snellen visual acuity scores
into an interval-scaled, approximately normal distribu-
tion

If the transformed data meets assumptions, a paramet-

ric test may be applied. Interpretation should be on the

transformed scale, or results should be back-transformed
for reporting.

5. Use non-parametric methods when assumptions cannot
be met: If the data remains non-normal after transforma-
tion or if the outcome is ordinal, a non-parametric test is
more appropriate. For instance, in pre-post comparisons
of central corneal thickness with heavily skewed values
(e.g. due to advanced ectasia), the Wilcoxon signed-rank
test should be preferred over the paired t-test.

6. Weigh the consequences of type | and type Il errors:
The relative importance of avoiding false positives vs.
false negatives should inform test selection. If the goal is
to detect subtle effects (e.g. in exploratory studies), and
the assumptions are marginally met, a parametric test
may be acceptable to maximise power. Conversely, if the
consequence of a false positive is high, such as in safety
endpoints, a more conservative approach using non-par-
ametric or permutation tests may be warranted.

7. Report and justify the choice transparently: Clearly
state the rationale for test selection, especially when a
non-parametric method is used. For example: “Because
macular pigment optical density was right-skewed and
remained non-normal after log transformation, a non-
parametric Mann-Whitney U test was used for group com-
parisons.” Reporting both the median with interquartile

range (IQR) and the mean with standard deviation can be
useful, provided it is clear which summary measure aligns
with the inferential test that was applied.
Transparency in reporting improves the interpretability and
credibility of findings. It is often useful to report both the
median with interquartile range (IQR) and the mean with
standard deviation, as long as it is clear which summary aligns
with the inferential test applied.

Common statistical tests in eye
and Vision Research: Applications
and examples

This chapter details several common statistical tests used in
eye and vision research. The selection of an appropriate test
is a critical step in data analysis, guided by the research ques-
tion, study design, and the nature of the data. Figure 2 pro-
vides a flowchart that visually maps out this decision-making
process, categorising tests based on the type of comparison,
the number and independence of the samples, and the data’s
characteristics.

Comparing two independent groups:
t-Test and Mann-Whitney U Test

When an outcome is measured in two independent groups,
such as patients receiving different treatments or fellow eyes
from separate individuals, the appropriate statistical approach
depends on the data’s measurement scale and distributional
characteristics.

Independent Samples t-Test: The independent sam-
ples t-test, also known as the two-sample t-test, compares
the means of a continuous variable between two unrelated
groups. This test assumes that the outcome variable is ap-
proximately normally distributed within each group, that
variances are equal (homoscedasticity), and that observations
are independent. The t-test is a powerful and efficient method
if these conditions are met.

Clinical example 4: In a clinical trial, 40 patients with glau-
coma are randomised to receive either Medication X (n=20)
or Medication Y (n=20). After one month, the mean + SD
change in IOP was 3.8 £ 1.5 mmHg for Medication X vs.
2.5 1.4 mmHg for Medication Y. The data in both groups
were approximately normally distributed. An independent
samples t-test was used to compare the means.

Mann-Whitney U Test: The Mann-Whitney U test (also known
as the Wilcoxon rank-sum test) is the non-parametric alterna-
tive to the t-test. It is appropriate when the data are ordinal,
non-normally distributed, or contain outliers that violate par-
ametric assumptions. Rather than comparing means, this test
evaluates whether one group tends to have highervalues than
the other based on ranks. It is often applied to outcomes like
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Figure 2: A flowchart to guide the selection of common statistical tests for analysing differences between groups. The framework branches
based on the research objective (comparing central trends, variance, or proportions). Further decisions are guided by the study design,
specifically whether the samples are independent or dependent and the number of groups being compared. The colour and border of each
box indicate the test’s assumptions regarding the data’s level of measurement and distribution: green boxes represent parametric tests

suitable for normally distributed metric data, while red-bordered boxes indicate non-parametric (distribution-free) tests for ordinal or

non-normally distributed data.

visual analogue scale ratings for discomfort or to continuous
variables with skewed distributions.

Clinical example 4 (continued): If, in the same IOP example,
the data were not normally distributed (e.g., due to a sub-
group of non-responders creating a skewed distribution),
a Mann-Whitney U test would be the correct choice. The
test would rank all 40 IOP changes from smallest to largest
and compare the sum of ranks between the two groups. A
result of U =130 with p = 0.012 would indicate a statistically
significant difference, suggesting that patients receiving
Medication X generally experienced greater IOP reductions
than those on Medication Y.

RELTR G RI[*H When reporting a t-test result in a journal,
results should be reported as: “The mean + SD change in

IOP was 3.8 £ 1.5 mmHg for Medication Xvs 2.5 +1.4 mmHg
for Medication Y. This difference was statistically significant
(two-sample t-test: t(38) = 2.75, p = 0.009).”

For a Mann-Whitney, since medians are often reported:
“The median IOP reduction was 4.0 mmHg (IQR 2.5 to 5.0)
with Xand 2.5 mmHg (IQR 1.5 to 3.5) with Y (Mann-Whitney
U =130, p=0.012)."
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It’s also good practice to mention that the test was
two-tailed and to confirm distributional decisions (e.g., “due
to a non-normal distribution, a non-parametric test was
used”).

Comparing two paired measurements:
paired t-test and Wilcoxon signed-rank test

Paired data arise frequently in EVR. Typical examples include
pre- and post-treatment measurements from the same pa-
tient (e.g. visual acuity before and after cataract surgery) or
comparisons between two eyes of the same individual, where
one eye receives treatment, and the fellow eye serves as a
control. In such cases, observations are not independent
and must be analysed using methods that account for with-
in-subject correlation.

Paired t-test: The paired t-test is the parametric method
for comparing two related measurements. Rather than com-
paring group means directly, the test calculates the difference
between paired observations and assesses whether the mean
difference significantly differs from zero. The key assumption
is that the distribution of these difference scores (not the raw
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data) is approximately normal. When this condition is met, the
test is efficient and widely used.

Clinical example 5: In a study of corneal collagen cross-link-
ing, central corneal thickness (CCT) was measured before
and six months after surgery in 15 treated eyes. The mean
preoperative CCT was 520 pum (SD = 30), and the post-
operative mean was 510 pm (SD = 32), yielding a mean
change of =10 um. If the distribution of these differences
appears symmetric, a paired t-test can be applied. A result
of t(14) = -5.0, p < 0.001, indicates a statistically significant
thinning of the cornea post-treatment. The interpretation
would be that CCT decreased on average by 10 um (95 %
Cl: -13.7 to -6.3 pm).

Wilcoxon Signed-Rank Test: When the assumptions of the
paired t-test are not met, forinstance, if the distribution of dif-
ferences is skewed or contains outliers, the Wilcoxon signed-
rank test provides a robust non-parametric alternative. This
test ranks the absolute values of the paired differences and
evaluates whether the changes are systematically positive or
negative. No assumption of normality is required.

Clinical example 5 (continued): In the same dataset, if sever-
al eyes show little change while others show marked thinning
or thickening, the distribution of differences may be skewed.
Applying the Wilcoxon signed-rank test in this scenario might
yield p = 0.0005, similarly indicating a significant postoper-
ative decrease in CCT. The median change could then be
reported as -9 um, highlighting a robust central tendency
despite the skewed distribution.

A crucial point on study design: It is essential to identify
paired designs correctly. The sample size in a paired analysis
is the number of pairs, not the total number of measurements.
In the example above, n =15 pairs, not 30 measurements. Mis-
applying an unpaired test to paired data incorrectly inflates
the sample size and can lead to erroneously small p-values.
Conversely, applying a paired test to unpaired data is statis-
tically invalid.

Comparing multiple independent groups:
ANOVA and Kruskal-Wallis Test

In many clinical studies, comparisons are required across
more than two independent groups. For example, refractive
error may be compared across age groups, or postoperative
outcomes may be evaluated among patients receiving dif-
ferent surgical techniques. In such cases, the use of multiple
t-tests introduces a high risk of Type | error due to repeated
comparisons. To avoid this, Analysis of Variance (ANOVA)
is used as the standard parametric method for comparing
means across three or more groups.

One-Way ANOVA: One-way ANOVA tests the null
hypothesis that all group means are equal. It compares be-
tween-group variability to within-group variability to de-
termine whether group membership is associated with a

statistically significant difference in the outcome. The as-
sumptions include approximate normality of the outcome
variable within each group, homogeneity of variances, and
independence of observations. The method is relatively ro-
bust to modest violations of variance equality if sample sizes
are balanced.

When ANOVA yields a significant result (e.g., p < 0.05),
it indicates that at least one group mean differs significantly.
However, it does not specify where the difference lies. Post-
hoc comparisons, such as Tukey’s Honest Significant Differ-
ence (HSD) or Bonferroni-adjusted pairwise t-tests, are then
used to identify which group pairs differ while controlling for
multiple comparisons.

ANOVA can be extended to more complex designs, such
as two-way ANOVA, to evaluate interactions between mul-
tiple factors (e.g. lens material x wear time in a 3 x2 factorial
design). Non-parametric alternatives for factorial designs are
less well-established. In practice, researchers often attempt
data transformation to permit parametric analysis or adopt
custom rank-based methods where available.

Clinical example 6: A study compares comfort ratings (on
a 0-100 scale) for three contact lens materials: hydrogel,
silicone hydrogel, and a novel water-gradient material (n=30
per group). Aone-way ANOVAyields F(2,87) = 6.4, p=0.003,
indicating a significant difference among the materials. Post-
hoc Tukey testing then reveals that the water-gradient lenses
are rated significantly more comfortable than both hydro-
gel (p = 0.002) and silicone hydrogel (p = 0.04), while the
difference between hydrogel and silicone hydrogel is not
significant (p = 0.10).

Kruskal-Wallis Test: When data are not normally distributed
or are ordinal, the Kruskal-Wallis test serves as the non-par-
ametric alternative to one-way ANOVA. [t tests whether at
least one group differs in distribution by ranking all observa-
tions and comparing mean ranks. The null hypothesis is that
all groups are drawn from the same distribution. If p < 0.05,
post-hoc pairwise comparisons (e.g. Mann-Whitney U tests
with Bonferroni correction) can identify which groups differ.

Clinical example 6 (continued): If the lens comfort data
were skewed, a Kruskal-Wallis test would be used. Aresult of
x3(2) = 9.5, p = 0.009 would indicate significant differences.
Subsequent pairwise Mann-Whitney tests with a Bonferro-
ni-adjusted a = 0.017 might show that the water-gradient
lens is significantly more comfortable than the hydrogel lens
(e.g., p = 0.003), while other comparisons do not reach the
corrected significance threshold.

GGG RIS When reporting an ANOVA result, include
group means, standard deviations, the test statistic with de-

grees of freedom, and the p-value. For example: “The mean
+ SD comfort scores were 75 + 10 for hydrogel lenses, 80 + 8
for silicone hydrogel, and 85 * 5 for water-gradient lenses.
One-way ANOVA showed a statistically significant differ-
ence in mean comfort scores across materials (F(2,87) = 6.4,
p =0.003). Post-hoc Tukey tests indicated that water-gradient
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lenses were rated significantly more comfortable than hydro-
gel (mean difference =10, p = 0.002) and silicone hydrogel
lenses (mean difference = 5, p = 0.04).”

When reporting a Kruskal-Wallis result, median and IQR
values are typically provided, along with the chi-square sta-
tistic and p-value. For example: “The median comfort scores
were 74 (IQR 68-80) for hydrogel, 79 (IQR 75-85) for silicone
hydrogel, and 86 (IQR 82-90) for water-gradient lenses. The
Kruskal-Wallis test indicated a significant difference among
groups (x*(2) = 9.5, p = 0.009). Post-hoc Mann-Whitney U
tests with Bonferroni correction showed that comfort was
significantly higher with water-gradient lenses compared
to hydrogel (U = 250, p = 0.003), but the difference be-
tween water-gradient and silicone hydrogel lenses did not
reach the corrected significance threshold (U =320, p=0.02;
a=0.017)."

Always clarify why a non-parametric method was chosen
if applicable, for example: “Due to skewed distributions and
ordinal scaling of comfort scores, a non-parametric test was
used.”

Repeated measures and longitudinal data:
Repeated-Measures ANOVA and Friedman
Test

In EVR, it is common for outcomes to be measured multiple
times within the same individuals, across time points, condi-
tions, or interventions. This within-subject or repeated-meas-
ures design allows each subject to act as their own control,
thereby reducing between-subject variability and increasing
statistical power. However, standard ANOVA independence
assumptions are violated because repeated measurements
on the same individuals are correlated.
Repeated-measures ANOVA extends the one-way
ANOVA framework to account for within-subject correlation.
Itis used when a continuous outcome is measured at multiple
time points or under different conditions for the same sub-
jectsand when the assumptions of approximate normality and
sphericity (equal variances of the differences between all pairs
of conditions) are met. When the sphericity assumption is
violated, corrections such as Greenhouse-Geisser or Huynh-
Feldt are applied to adjust degrees of freedom and p-values.

Clinical example 7: In a study of postoperative visual re-
covery, best-corrected visual acuity (BCVA, logMAR) is
measured in 10 patients at 1 week, 1 month, and 3 months
after cataract surgery. A repeated-measures ANOVA tests
whether mean logMAR changes significantly over time. An
analysisyielding F(2,18) = 5.5, p = 0.013, suggests a significant
difference across time points. Post-hoc comparisons (e.g.,
paired t-tests with Bonferroni correction) might then show
that significant improvement occurred between 1 week and
1 month (p < 0.01), but not between 1 month and 3 months
(p=0.314).

Friedman Test: When the assumptions for repeated-meas-
ures ANOVA are not satisfied, particularly in small samples
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or with ordinal or skewed data, the Friedman test offers a
non-parametric alternative. It ranks the measurements within
each subject and tests whether the average rank differs across
conditions. The test evaluates whether at least one condition
systematically differs in distribution without assuming nor-
mality or sphericity.

Clinical example 7 (continued): If the logMAR values in
the above study were not normally distributed, the Fried-
man test would be more appropriate. A result of x*(2) = 8.0,
p = 0.018 would again indicate a statistically significant
change over time. Post-hoc pairwise Wilcoxon signed-rank
tests could then be used to identify where the specific dif-
ferences occurred.

A note on missing data: Both repeated-measures ANOVA
and the Friedman test typically require complete data for
each subject across all measurement points. Missing data
from missed visits or incomplete assessments must be han-
dled carefully, either by excluding those cases (if few) or by
using more advanced methods like mixed-effects models,
which can account for missing data and are beyond the scope
of this article.

Each of these tests helps guard against the play of chance
by providing a p-value to inform decisions about the hypoth-
eses. However, a p-value alone is not enough; the size of the
effect and confidence intervals also need to be considered
to understand what the data are telling.

Interpreting statistical significance:
p-values, confidence intervals, and
effect sizes

When reporting the results of statistical tests, research-
ers often focus on the p-value and whether it exceeds
the conventional threshold of 0.05. However, reliance on
“p < 0.05” alone has been widely criticised for oversimplify-
ing results.’®19.2021 A finding can be statistically significant yet
clinically trivial, or vice versa. To interpret results responsibly,
especially in a clinical field, one must look beyond the p-value
to confidence intervals and effect sizes.

The p-Value revisited: A p-value is often misunderstood.
Itis not the probability that the null hypothesisis true, nor the
probability that the observed effect was due to chance in the
sense of a real vs chance cause. Rather, as defined earlier, it’s
the probability of obtaining the observed data (or something
more extreme) if the null hypothesis were true. For example,
p = 0.03 in a trial of an anti-VEGF drug for macular oedema
means: “If the drug had no real effect, there’s a 3% chance
we’d see an improvement as large as observed.” It does not
mean “there’s a 97 % chance the drug works”. Many experi-
enced researchers mistakenly interpret p this way. P-values
do not measure the probability that H, is true or that data
were produced by random chance alone.

Scientific conclusions should not be based only on wheth-
er the p-value passes a threshold (e.g. 0.05). In other words,
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treating 0.049 as a success and 0.051 as a failure is an arbi-
trary dichotomy and can be misleading. Small changes in data
or analysis can shift a result from significant to non-significant
without fundamentally altering the clinical message.

One issue is the sample size: some studies have small
sample sizes due to difficulties in recruiting participants
(rare diseases, invasive procedures, etc.), leading to p-values
that might be greater than 0.05 even if there is a moderate
effect (risk of Type Il error). Conversely, large datasets (e.g.
big epidemiological studies or large trials) can produce tiny
p-values for very small statistically “real” differences but
clinically negligible. Both scenarios require judgment beyond
the p-threshold.

Confidence Intervals (Cls): A Cl gives a range where the
true effect likely lies. A 95% CI means that, over many rep-
etitions, 95 % of such intervals would contain the true value.
For example, if a treatment improves contrast sensitivity by
0.10 log units with a 95% CI of 0.02 to 0.18, the true effect
could range from 0.02 to 0.18. If the interval excludes O, the
result is statistically significant at the 0.05 level.

Cls reflect both precision and effect size. Clinical rele-
vance depends not just on whether an effect exists (p-value)
but on whether it’s large enough to matter. For this reason,
many journals now require Cls alongside p-values.

Clinical example 7: Consider an RCT comparing two glau-
coma drops: mean |OP reduction differs by 1.0 mmHg
(p =0.04), with a 95 % Cl of 0.1to 1.9 mmHg. Though “signif-
icant,” the clinical importance is debatable, some specialists
consider 20 % change mmHg necessary to justify changing
therapy.?22324 Conversely, a non-significant result with a wide
Cl, e.g. 1 mmHg difference, p=0.2, Cl -0.6 to +2.6, shows un-
certainty. The effect could be meaningful or null, suggesting
limited power. Reporting “no significant difference” without
noting this uncertainty is misleading.

Effect sizes: Cl show the plausible range for an effect, while
effect size metrics quantify how large that effect isin a stand-
ardised way. For comparing means, for instance, Cohen’s d
expresses the mean difference in units of the pooled standard
deviation.?®

Clinical example 8: If treatment A improves visual acuity
by 0.1 logMAR more than treatment B, and the pooled SD
is 0.2 logMAR, the effect size is Cohen’s d =x0.5, which is
considered a medium effect. If the pooled SD were only
0.05 logMAR, the effect size would be d = 2.0, a very large
effect.

Effect sizes like Cohen’s d, odds ratios (for binary outcomes),
or n? (for ANOVA) are vital because statistical significance
alone does not indicate clinical importance. Small, clinically
trivial effects can be highly significant in large studies, while
large, potentially important effects may not reach statistical
significance in small studies.

In eye care, established clinically meaningful bench-
marks help interpret results, such as a change of 0.1 logMAR
(5 ETDRS letters) in visual acuity or 1 dB in visual field mean

deviation. Effects smaller than these may be clinically unim-

portant evenif p < 0.05; conversely, larger effects may warrant

attention even if p> 0.05.

Given the known limitations of relying solely on p-values,
clinical relevance is often best captured by the Minimum
Clinically Important Difference (MCID).2¢ The MCID repre-
sents the smallest change in an outcome that a patient would
perceive as beneficial or that would prompt a change in their
clinical management. Ideally, clinical trials should be designed
with sufficient power to detect an effect at least as large as the
MCID, and the results should be interpreted in this context.

To ensure robust conclusions, researchers should be
aware of several common pitfalls when interpreting statis-
tical results.

1. Dichotomous Thinking (,p = 0.049 vs p = 0.051“): Treating
results as a simple ,success” or failure” based on the 0.05
threshold leads to dichotomous thinking. Instead of using
ambiguous phrases like ,trended towards significance,”
it is better to report the exact p-value and confidence
interval. This allows the reader to assess the evidence,
especially when the effect size is substantial but the result
narrowly misses the significance threshold.

2. Multiple Comparisons and p-Hacking: When many out-
comes or analyses are performed, the chance of obtaining
a small p-value increases by chance alone. This can lead
to reporting spurious findings. As discussed later, adjust-
ments for multiple comparisons are often necessary to
control this risk.

3. Non-significant results do not indicate the absence of an
effect: It is a common mistake to conclude ,there was no
effect” when p > 0.05. The correct interpretation is that
,no statistically significant effect was found.” The confi-
dence interval is crucial here: does it rule out a clinically
meaningful effect, oris it very wide, suggesting the study
was inconclusive (i.e., underpowered)? For example: “We
did not find a significant difference in retinal nerve fibre
layer thickness between groups (mean difference 2 um,
95% CI -3 to +7, p = 0.4), suggesting any true difference
is likely small.”

4. Over-reliance on ,Significant” Labels: A ,statistically sig-
nificant” result is not automatically an important one. In
large observational studies, very small, clinically trivial
differences can produce tiny p-values. Always circle back
to the effect size and its clinical relevance to judge the
practical importance of the finding.

Clinical relevance: In evidence-based practice, both the
presence and size of effects matter. A treatment might sig-
nificantly alter an imaging parameter but offer no perceptible
benefit to patients, limiting its value. Conversely, a large risk
reduction in blindness from a pilot study (p = 0.1) may still
warrant attention if the effect is clinically important but the
sample is small.

p-values help assess whether findings are likely due to
chance but must be interpreted in context. Cls show the
plausible range of the effect and whether it crosses clini-
cally relevant thresholds. Effect sizes quantify magnitude
in a standardised way. Ophthalmic research should report
all three, p-values, Cls, and effect sizes, to ensure statistical
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results are clinically meaningful. This approach prevents over-
statement or neglect of findings and better aligns statistical
analysis with clinical judgment.

RELTa i RSl When presenting results, include the effect
size and its confidence interval, not just the p-value. For

example: “Treatment Areduced IOP by 1.2 mmHg more than
Treatment B (95 % ClI: 0.3 to 21 mmHg; p = 0.01; Cohen’s
d = 0.6).” This allows readers to judge both significance and
clinical relevance. Always specify the test used, whether it was
two-tailed, and justify any distributional assumptions (e.g. use
of non-parametric methods for skewed data).

Multiple comparisons and adjust-
ments: Controlling false positives

Modern studies often measure numerous outcomes. A clinical
trial for glaucoma might assess IOP, visual field indices, optic
nerve imaging metrics, and quality of life, multiple endpoints.
Similarly, an observational study may examine multiple pre-
dictors for their association with a disease outcome.

The problem of multiple testing

Multiple testing is a common statistical issue in EVR (Table 4).
Each time a hypothesis test is performed, there is a chance
(a) of a false positive. When multiple tests are done, the
possibility of at least one false positive increases. Multiple
comparisons (or multiple testing) are a critical issue: without
correction, one might be misled by apparently significant
findings that are merely random noise. For example, testing
20 independent outcomes at a = 0.05, on average, one will
be significant by chance alone.

Adjustment techniques

Multiple comparison adjustments reduce false positives
(Type | errors) when many tests are performed. Common
goalsinclude controlling the Family-Wise Error Rate (FWER),
which is the probability of at least one false positive, and the
False Discovery Rate (FDR), which is the proportion of false
positives among significant results (Table 5).

14 | ocL.Volume5 - No.7- September 2025

Clinical example 9: Multiple endpoints in a dry eye trial

A study of a new dry eye therapy evaluates four outcomes:
(1) Symptom score (2) Tear Break-Up Time (TBUT) (3) Corneal
staining grade (4) Schirmer test. Each is tested at a = 0.05.

The p-values are:

«  Symptoms: 0.01 (significant)

. TBUT: 0.04 (significant)

- Staining: 0.20 (not significant)

« Schirmer: 0.03 (significant)
Conclusion: Without correction, researchers might claim
the treatment significantly improved symptoms, TBUT,
and Schirmer results.

Bonferroni Correction:

« Adjust afor four tests: a=0.05 /4 = 0.0125

«  Only Symptoms (p = 0.01) remain significant

« TBUT (0.04) and Schirmer (0.03) > 0.0125
— not significant
Conclusion: Only symptom improvement is statistically
robust. Other effects may be trends but are not conclu-
sive.

Holm-Bonferroni Method:
« Order p-values: 0.01, 0.03, 0.04, 0.20
. Compare each to adjusted thresholds:
<0.05/4 = 0.0125 - significant
<0.05/3 = 0.0167 = not significant
. Holm stops at the first non-significant test.
Conclusion: Only symptoms pass. TBUT and Schirmer are
not significant.

Benjamini-Hochberg (FDR 5 %):
. Sorted p-values: 0.01, 0.03, 0.04, 0.20
. Compare each to (i/4) x 0.05:
<0.0125 (i=1) > yes
>0.025 (i=2) = no - stop
Conclusion: Only symptoms meet the FDR threshold.

Interpretation: All three methods agree: only the symptom
improvement is statistically reliable. TBUT and Schirmer do
not reach significance after correcting for multiple compar-
isons. If these outcomes are highly correlated (e.g. symptom
scores improve with TBUT), Bonferroni may be overly strict.
In such cases, alternative methods like Hochberg's step-up
or no correction may be considered, but only if co-primary
outcomes were pre-specified with a strong clinical rationale.
Corrections are most important when testing many out-
comes without prior justification.
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Table 5: Overview of common methods used to adjust for multiple testing in research studies, highlighting when each method
is recommended, how the correction is applied, and key considerations to guide proper usage.

Key Considerations

- Very conservative, increasing Type Il
error (chance of false negatives).

- Best used for a small set of primary
outcomes.

- Simple to implement and commonly
recognised by reviewers and journals.

- Controls the familywise error rate
(FWER) in a stepwise manner.

« Less strict than the standard
Bonferroni correction.

- Protects against inflated false-positive
rates but has more power than
Bonferroni.

- Controls the proportion of false

Method When to Use How to Apply the Correction
Bonferroni « Suitable when the number of 1. Set your chosen familywise
Correction comparisons is relatively small  error rate, e.g. arwer = 0.05.
and a very stringent control of 2. Count the total number
Type | error is required. of comparisons, m.
- Often used for confirmatory 3. Adjust the per-comparison sig-
analyses where false positives  nificance level to d.q = arwer / M.
must be minimised. 4. Reject H, for a given test
if P < Qagj.
Holm- + Recommended as a 1. Sort p-values in ascending
Bonferroni stepwise, less conservative order (py) S P) < - < Pm))-
alternative to Bonferroni. 2. Compare p() to adjusted
« Useful when the number thresholds: apwer / (M—i+1).
of tests is moderate, 3. Reject Ho in order until a
balancing Type | and Type Il p-value fails its threshold test.
error control.
Benjamini- - Appropriate for exploratory 1. Choose a desired FDR level,
Hochberg or “discovery” analyses with e.g.0.05.

(BH) many comparisons.
» Commonly used in large-
scale data (e.g. genomics,
proteomics) to control the
False Discovery Rate (FDR).

Clinical example 10: Multiple arms in a surgical trial

A study compares three surgical techniques (A, B, C) for
correcting refractive error.

Outcomes include:

1. Post-operative refraction

2. Uncorrected distance visual acuity (UDVA)

Step 1: Initial comparison - One-Way ANOVA

Researchers run a one-way ANOVA on post-op refraction
to test whether there is any overall difference among the
three groups.

Result: ANOVA p =0.02 = suggests at least one group differs
significantly in mean refraction.

Conclusion: ANOVA tells you a difference exists, but not
which groups differ.

Step 2: Post-Hoc Testing - Which groups differ?
There are three possible pairwise comparisons: (i) A vs B (ii)
Avs C (iii)Bvs C

Option A: Correct Approach - Tukey’s HSD or Dunnett’s
Test: These are post-hoc methods designed to control for
multiple comparisons:

16 | ocL . Volume 5+ No.7- September 2025

2.Sort p-values in ascending
order: pua) £pP@) S - < P(m)-

3. For each pg, find the largest
i satisfying p < (i/m) x arpg.

4. Reject H, for all tests whose
p-values are < that threshold.

positives among all rejected hypotheses,
rather than eliminating them outright.

- More powerful than Bonferroni-type
methods for large sets of tests but allows
some false positives (accepts FDR rather
than FWER).

« Widely used when the emphasis is on
controlling overall false discovery rather
than guaranteeing zero false positives.

1. Tukey’s HSD compares all group pairs and keeps the
Family-Wise Error Rate (FWER) at 0.05.

2. Dunnett’s test compares each group to a control group
(e.g.-Avs B, Avs C), also controlling FWER.

Without adjustment, running multiple pairwise tests increase

therisk of false positives. For 3 comparisons at a=0.05 each,

the chance of at least one false positive is ~14% (1- 0.953).

Option B: Incorrect Approach - Three Unadjusted t-tests:
If a researcher ran three independent t-tests at a = 0.05:

Avs B:p=0.04
Avs C:p=0.03
BvsC:p=0.08

They might conclude that A differs from B and C. But this
approach inflates the Type | error rate because each test is
treated inisolation. Even if no real difference exists, one test
could appear significant by chance.

Conclusion: Correct interpretation with Tukey’s test: Only
report pairwise differences if they remain significant after
Tukey adjustment. Tukey accounts for the number of com-
parisons, so p-values are slightly higher, but false positives
are controlled.
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Step 3: Interpretation and conclusion

The ANOVA shows there is a difference in refraction between
at least two surgical groups. The Tukey test identifies which
specific pairs differ, while keeping the error rate under con-
trol. If only Avs C is significant after adjustment, the conclu-
sion is: “Surgical method A resulted in significantly different
post-op refraction compared to C (p = 0.03, Tukey-adjusted),
with no significant differences between Aand B or Band C.”

There is ongoing debate about whether adjustment for mul-
tiple comparisons is necessary when outcomes are pre-spec-
ified and reflect distinct aspects of the study’s objectives.
Some argue that outcomes may be reported individually
with appropriate caution if they are clinically meaningful and
independent.?”282% However, the standard practice clearly
distinguishes primary from secondary outcomes and applies
the strictest statistical threshold to the primary endpoint.
In contrast, adjustments are generally recommended for
subgroup analyses and exploratory outcomes; at the very
least, such findings should be explicitly labelled as explor-
atory and interpreted as hypothesis-generating rather than
confirmatory.

A common approach in practice is to predefine a single
primary outcome tested at a = 0.05, with other outcomes
treated as secondary, either reported descriptively or requir-
ing confirmation in future studies. CONSORT guidelines 3°
recommend specifying which outcomes are primary and
whether adjustments for multiple comparisons were made.
When multiple tests are performed without adjustment,
authors should disclose this and interpret it cautiously. For
example, a secondary outcome with p = 0.03 may be de-
scribed as “nominally significant, unadjusted for multiple
comparisons.”

BT RI[*H Authors should clearly state whether adjust-
ments for multiple comparisons were applied and specify the

method used. For example:

1. “ABonferroni correction was applied for the three primary
comparisons, setting the threshold for significance at
p <0.017.”

2. “All pairwise post hoc comparisons were adjusted using
Tukey’s method to control the family-wise error rate.”

3. “Given the number of secondary endpoints, results are
interpreted descriptively. Forinstance, tear cytokine levels
differed nominally between groups (p = 0.03) but did not
meet the adjusted significance threshold (p < 0.01).”

Transparent reporting ensures appropriate interpretation of

results and guards against overstating findings due to inflated

Type | error.

Balancing Type | and Type Il errors: Adjusting for multiple
comparisons reduces the risk of false positives (Type | errors)
but increases the risk of false negatives (Type Il errors), po-
tentially obscuring true effects. For example, if a treatment
genuinely influences several related outcomes, a strict cor-
rection, such as the Bonferroni method, may make it harder to
detect those effects. In such cases, researchers may consider
using composite outcomes or multivariate methods (e.g.

MANOVA) to assess an overall effect across endpoints. While
these approaches are beyond the current scope, the key prin-
ciple remains: the more tests performed, the more cautious
one must be in interpreting individual p-values.

Transparent reporting and
best practices

Robust study design and appropriate statistical analysis con-
tribute little to EVR if the results are not reported transpar-
ently. Clear communication of methods and findings helps
readers evaluate how conclusions were reached and whether
they apply in clinical contexts. Two cornerstone guidelines (1)
CONSORT?° (Consolidated Standards of Reporting Trials) for
randomised controlled trials and (2) STROBE?3! (Strength-
ening the Reporting of Observational Studies in Epidemi-
ology) for observational studies, call for detailed accounts
of statistical procedures. For example, CONSORT item 12
requires specifying “statistical methods used to compare
groups for primary and secondary outcomes,” while STROBE
requests explanations of how missing data were handled and
whether sample size calculations were performed. To find the
most appropriate validated reporting guidelines, refer to the
EQUATOR network.

Beyond methodological rigour, transparent statistical
reporting is an ethical imperative. In EVR, findings directly
influence patient management; misreporting or selective
presentation of data can lead to suboptimal decisions and
tangible harm. Transparency helps patients benefit from gen-
uine scientific progress rather than misleading claims. It also
preserves the integrity of the scientific record by reducing
research waste and supporting reproducibility. Research-
ers have a moral and professional obligation to report all
outcomes, including non-significant or unfavourable ones,
to avoid distorting the evidence base. Transparency fosters
accountability, enabling peers to verify analyses and assess
whether findings are robust enough to guide clinical practice.
Adherence to ethical frameworks such as the Declaration of
Helsinki (2024) and Good Clinical Practice, alongside report-
ing standards like CONSORT and STROBE, reinforces the
duty to disseminate results responsibly and maintain public
trust in research.

Conclusion

Rigorous statistical testing constitutes a cornerstone of robust
clinical decision-making in eye care. This article extends the
foundational concepts of descriptive statistics (introduced
in Part 1) by outlining core inferential principles and illustrat-
ing how Type | and Type Il errors directly impact the validity
of research outcomes. Clear guidance on parametric and
non-parametric tests has demonstrated how data character-
istics and study designs determine the most suitable analytic
approach. Emphasising effect sizes and confidence intervals
alongside p-values highlights the distinction between sta-
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Table 6: Key recommendations

Recommendation Reporting tip

Pre-specification of outcomes

Clearly define primary and secondary outcomes in the study protocol.

State hypotheses a priori to reduce data dredging.

Multiple comparisons

Disclose methods for adjusting multiple testing (e.g. Bonferroni, Holm).

If no adjustment is made, justify the rationale based on clinical distinctiveness.

Descriptive statistics

Report group-wise summaries (e.g. mean * SD, median and IQR) before inferential

tests to aid interpretation of variability and effect magnitude.

Confidence Intervals

Always present 95% confidence intervals alongside p-values to convey precision

and potential clinical relevance.

Exact p-values

Report exact p-values (e.g. p = 0.034) rather than thresholds (e.g. p < 0.05) to avoid

binary interpretations of significance.

Avoiding misleading terminology

Use “statistically significant” strictly for test results. Use “clinically important” or

“clinically significant” only when justified by clinical thresholds.

Unit of analysis

Specify whether the analysis is per-eye or per-patient. For paired-eye data, account

for within-subject correlation (e.g. mixed models, paired tests).*?

Handling of assumptions

Report assumptions checked (e.g. normality, equal variances). Justify choice of

non-parametric tests where assumptions are violated.

Missing data

Describe handling of missing data (e.g. complete-case analysis, imputation).

Quantify missingness and discuss potential bias.

Software and versions
reproducibility.

Flow diagrams and clear figures

Optionally cite software used for analysis (e.g. Rv4.2.1, SPSS v29) to support

For trials, include CONSORT flow diagrams. Use visual summaries (e.g. histograms,

boxplots) to display group differences.

Referencing reporting guidelines

State compliance with CONSORT (for RCTs) or STROBE (for observational studies)

to reinforce transparency and reporting standards.

Illustrative example

Provide detailed example analyses (e.g. primary outcome, adjustment methods,

Cl and p-value reporting, unit of analysis) to model good practice.

Ethical and practical considerations

Transparently report statistical methods, outcome definitions, and limitations

to support validity and enable data synthesis in future research.

tistical significance and clinical relevance. Furthermore, the
review of multiple-comparison procedures underscores the
necessity of transparent reporting to prevent inflated error
rates and misleading conclusions, particularly pertinent in
ophthalmic studies with multiple endpoints. The practical
examples and recommendations for reporting standards, such
as STROBE and CONSORT, reinforce that sound statistical
methodology and clear communication of results strengthen
scientific rigour and foster evidence-based practice. Ulti-
mately, by advancing statistical literacy within optometry
and ophthalmology, patient care benefits from more reliable
evidence, paving the way for improved treatment strategies
and long-term outcomes.
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